Stochastic Bounds for Conditional Distributions Under Positive Dependence

Identificadores
Statistics
Share
Metadata
Show full item recordDate
2013-04-04Department
Estadística e Investigación OperativaAbstract
We provide stochastic bounds for conditional distributions of individual risks in a portfolio, given that the aggregate risk exceeds its value at risk. Expectations of these conditional distributions can be interpreted as marginal risk contributions to the aggregate risk as measured by the tail conditional expectation. We first provide general lower and upper stochastic bounds and then we obtain further improvements of the bounds in the case of a portfolio consisting of dependent risks. We also derive new characterizations of comonotonic random vectors.
Collections
- Artículos Científicos [4821]
- Articulos Científicos Est. I.O. [123]
- Artículos Científicos INDESS [384]