• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fractional skew monoid rings

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/16074

DOI: 10.1016/j.jalgebra.2004.03.009

ISSN: 0021-8693

Files
sinvt23jan04.pdf (386.9Kb)
Statistics
View statistics
Metrics and citations
 
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
Ara, P.; González-Barroso, M.A.; Goodearl, K.R.; Pardo Espino, EnriqueAuthority UCA
Date
2004-01-01
Department
Matemáticas
Source
Journal of Algebra 278 (2004), 104-126
Abstract
Given an action α of a monoid T on a ring A by ring endomorphisms, and an Ore subset S of T, a general construction of a fractional skew monoid ring is given, extending the usual constructions of skew group rings and of skew semigroup rings. In case S is a subsemigroup of a group G such that G=S−1S, we obtain a G-graded ring with the property that, for each s∈S, the s-component contains a left invertible element and the s−1-component contains a right invertible element. In the most basic case, where and , the construction is fully determined by a single ring endomorphism α of A. If α is an isomorphism onto a proper corner pAp, we obtain an analogue of the usual skew Laurent polynomial ring, denoted by A[t+,t−;α]. Examples of this construction are given, and it is proven that several classes of known algebras, including the Leavitt algebras of type (1,n), can be presented in the form A[t+,t−;α]. Finally, mild and reasonably natural conditions are obtained under which is a purely infinite simple ring
Subjects
Skew monoid ring; Purely infinite simple ring; Leavitt algebra
Collections
  • Artículos Científicos [4803]
  • Articulos Científicos Matemáticas [159]

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestionsUser Support