Show simple item record

dc.contributor.authorFerreiro-González, Marta
dc.contributor.authorÁlvarez, José A.
dc.contributor.authorFernández Barbero, Gerardo
dc.contributor.authorPalma Lovillo, Miguel
dc.contributor.authorAyuso Vilacides, Jesús
dc.contributor.authorGarcía Barroso, Carmelo
dc.contributor.otherQuímica Analíticaen_US
dc.contributor.otherQuímica Físicaen_US
dc.date.accessioned2018-04-18T06:59:26Z
dc.date.available2018-04-18T06:59:26Z
dc.date.issued2016-05
dc.identifier.urihttp://hdl.handle.net/10498/20337
dc.description.abstractArsonists usually use an accelerant in order to start or accelerate a fire. The most widely used analytical method to determine the presence of such accelerants consists of a pre-concentration step of the ignitable liquid residues followed by chromatographic analysis. A rapid analytical method based on headspace-mass spectrometry electronic nose (E-Nose) has been developed for the analysis of Ignitable Liquid Residues (ILRs). The working conditions for the E-Nose analytical procedure were optimized by studying different fire debris samples. The optimized experimental variables were related to headspace generation, specifically, incubation temperature and incubation time. The optimal conditions were 115 C and 10 min for these two parameters. Chemometric tools such as hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA) were applied to the MS data (45–200 m/z) to establish the most suitable spectroscopic signals for the discrimination of several ignitable liquids. The optimized method was applied to a set of fire debris samples. In order to simulate post-burn samples several ignitable liquids (gasoline, diesel, citronella, kerosene, paraffin) were used to ignite different substrates (wood, cotton, cork, paper and paperboard). A full discrimination was obtained on using discriminant analysis. This method reported here can be considered as a green technique for fire debris analyses.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceSensors 2016, 16, 695en_US
dc.subjectfire accelerantsen_US
dc.subjectdiscriminationen_US
dc.subjectoptimizationen_US
dc.subjectE-noseen_US
dc.titleDetermination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Noseen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.3390/s16050695


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
This work is under a Creative Commons License Attribution-NonCommercial-NoDerivatives 4.0 Internacional