• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Institutos de Investigación
  • Instituto de Investigación en Biomoléculas INBIO
  • Artículos Científicos INBIO
  • View Item
  •   RODIN Home
  • Institutos de Investigación
  • Instituto de Investigación en Biomoléculas INBIO
  • Artículos Científicos INBIO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Study of the role played by NfsA, NfsB nitroreductase and NemA flavin reductase from Escherichia coli in the conversion of ethyl 2-(2′-nitrophenoxy)acetate to 4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (D-DIBOA), a benzohydroxamic acid with interesting biological properties

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/20376

DOI: 10.1007/s00253-011-3787-0

Files
2012-Study of the role played by NfsA, NfsB nitroreductase and NemA flavin reductase from Escherichia coli in the conversion of ethyl.pdf (251.9Kb)
Statistics
View statistics
Metrics and citations
 
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
Le Borgne, Sylvie; Valle Gallardo, AntonioAuthority UCA; Bolívar Pérez, JorgeAuthority UCA; Cabrera Revuelta, GemaAuthority UCA; Cantero Moreno, DomingoAuthority UCA
Date
2012-01
Department
Bioquímica y Biología Molecular, Microbiología, Medicina Preventiva, Salud Pública; Ingeniería Química y Tecnología de Alimentos
Source
Applied Genetics and Molecular Biotechnology (2012) 94:163–171
Abstract
Benzohydroxamic acids, such as 4-hydroxy-(2H)- 1,4-benzoxazin-3(4H)-one (D-DIBOA), exhibit interesting herbicidal, fungicidal and bactericidal properties. Recently, the chemical synthesis of D-DIBOA has been simplified to only two steps. In a previous paper, we demonstrated that the second step could be replaced by a biotransformation using Escherichia coli to reduce the nitro group of the precursor, ethyl 2-(2′-nitrophenoxy)acetate and obtain D-DIBOA. The NfsA and NfsB nitroreductases and the NemA xenobiotic reductase of E. coli have the capacity to reduce one or two nitro groups from a wide variety of nitroaromatic compounds, which are similar to the precursor. By this reason, we hypothesised that these three enzymes could be involved in this biotransformation. We have analysed the biotransformation yield (BY) of mutant strains in which one, two or three of these genes were knocked out, showing that only in the double nfsA/nfsB and in the triple nfsA/nfsB/nemA mutants, the BY was 0%. These results suggested that NfsA and NfsB are responsible for the biotransformation in the tested conditions. To confirm this, the nfsA and nfsB open reading frames were cloned into the pBAD expression vector and transformed into the nfsA and nfsB single mutants, respectively. In both cases, the biotransformation capacity of the strains was recovered (6.09±0.06% as in the wild-type strain) and incremented considerably when NfsA and NfsB were overexpressed (40.33%±9.42% and 59.68%±2.0% respectively).
Subjects
Biotransformation; Escherichia coli; Benzohydroxamic acids; Nitroreductases NfsA and NfsB; Flavin reductase NemA; D-DIBOA
Collections
  • Artículos Científicos [4205]
  • Articulos Científicos Biomedicina [170]
  • Artículos Científicos INBIO [242]
  • Articulos Científicos Ing. Quim. [79]
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
This work is under a Creative Commons License Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestionsUser Support