• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Institutos de Investigación
  • Instituto de Investigación en Biomoléculas INBIO
  • Artículos Científicos INBIO
  • View Item
  •   RODIN Home
  • Institutos de Investigación
  • Instituto de Investigación en Biomoléculas INBIO
  • Artículos Científicos INBIO
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanism of [3+2] Cycloaddition of Alkynes to the [Mo₃S₄(acac)₃(py)₃][PF₆] Cluster

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/20494

DOI: 10.1002/chem.201405518

Files
2015-Mechanism of [3 + 2] cycloaddition of alkynes to the Mo3S4(acac)3(py)3PF6 cluster.pdf (759.5Kb)
Statistics
View statistics
Metrics and citations
 
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
Pino-Chamorro, Jose Ángel; L. Gushchin, Artem; Fernández-Trujillo Rey, María JesúsAuthority UCA; Hernández-Molina, Rita; Vicent, Cristian; García Algarra, AndrésAuthority UCA; García Basallote, ManuelAuthority UCA
Date
2015
Department
Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica
Source
Chemistry a European Journal2015, 21, 2835 – 2844
Abstract
A study, involving kinetic measurements on the stopped-flow and conventional UV/Vis timescales, ESI-MS, NMR spectroscopy and DFT calculations, has been carried out to understand the mechanism of the reaction of [Mo3S4(acac)3(py)3][PF6] ([1]PF6 ; acac=acetylacetonate, py= pyridine) with two RC CR alkynes (R=CH2OH (btd), COOH (adc)) in CH3CN. Both reactions show polyphasic kinetics, but experimental and computational data indicate that alkyne activation occurs in a single kinetic step through a concerted mechanism similar to that of organic [3+2] cycloaddition reactions, in this case through the interaction with one Mo(m- S)2 moiety of [1]+. The rate of this step is three orders of magnitude faster for adc than that for btd, and the products initially formed evolve in subsequent steps into compounds that result from substitution of py ligands or from reorganization to give species with different structures. Activation strain analysis of the [3+2] cycloaddition step reveals that the deformation of the two reactants has a small contribution to the difference in the computed activation barriers, which is mainly associated with the change in the extent of their interaction at the transition-state structures. Subsequent frontier molecular orbital analysis shows that the carboxylic acid substituents on adc stabilize its HOMO and LUMO orbitals with respect to those on btd due to better electron-withdrawing properties. As a result, the frontier molecular orbitals of the cluster and alkyne become closer in energy; this allows a stronger interaction.
Subjects
activation strain model; C S bond formation; density functional calculations; kinetics; reaction mechanisms
Collections
  • Artículos Científicos [4209]
  • Articulos Científicos CC. Mat. [166]
  • Artículos Científicos INBIO [242]
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
This work is under a Creative Commons License Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestionsUser Support