The botrydial biosynthetic gene cluster of Botrytis cinerea displays a bipartite genomic structure and is positively regulated by the putative Zn(II)2Cys6 transcription factor BcBot6

Statistics
Metrics and citations
Share
Metadata
Show full item recordDate
2016Department
Química OrgánicaSource
Fungal Genetics and Biology 96 (2016) 33–46Abstract
Botrydial (BOT) is a non-host specific phytotoxin produced by the polyphagous phytopathogenic fungus Botrytis cinerea. The genomic region of the BOT biosynthetic gene cluster was investigated and revealed two additional genes named Bcbot6 and Bcbot7. Analysis revealed that the G + C/A + T-equilibrated regions that contain the Bcbot genes alternate with A + T-rich regions made of relics of transposable elements that have undergone repeat-induced point mutations (RIP). Furthermore, BcBot6, a Zn(II)2Cys6 putative transcription factor was identified as a nuclear protein and the major positive regulator of BOT biosynthesis. In addition, the phenotype of the DBcbot6 mutant indicated that BcBot6 and therefore BOT are dispensable for the development, pathogenicity and response to abiotic stresses in the B. cinerea strain B05.10. Finally, our data revealed that B. pseudocinerea, that is also polyphagous and lives in sympatry with B. cinerea, lacks the ability to produce BOT. Identification of BcBot6 as the major regulator of BOT synthesis is the first step towards a comprehensive understanding of the complete regulation network of BOT synthesis and of its ecological role in the B. cinerea life cycle.
Subjects
Botrytis cinerea; Secondary metabolism; Toxin; Botrydial; Transcription factor; Zn(II)2Cys6Collections
- Artículos Científicos [4817]
- Artículos Científicos INBIO [264]
- Articulos Científicos Quim. Org. [174]