Show simple item record

dc.contributor.authorAmat, Sergio
dc.contributor.authorLegaz, María José
dc.contributor.authorRuiz-Álvarez, Juan
dc.contributor.otherCiencias y Técnicas de la Navegación, Máquinas y Motores Térmicos y Teoría de la Señal...en_US
dc.date.accessioned2019-07-30T11:12:32Z
dc.date.available2019-07-30T11:12:32Z
dc.date.issued2019-05
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/10498/21613
dc.description.abstractFor the approximation of stiff systems of ODEs arising from chemistry kinetics, implicit integrators emerge as good candidates. This paper proposes a variational approach for this type of systems. In addition to introducing the technique, we present its most basic properties and test its numerical performance through some experiments. The main advantage with respect to other implicit methods is that our approach has a global convergence. The other approaches need to ensure convergence of the iterative scheme used to approximate the associated nonlinear equations that appear for the implicitness. Notice that these iterative methods, for these nonlinear equations, have bounded basins of attraction.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceMathematics 2019, 7, 459en_US
dc.subjectvariational methodsen_US
dc.subjectchemistry kineticsen_US
dc.subjectglobal convergenceen_US
dc.titleOn a Variational Method for Stiff Differential Equations Arising from Chemistry Kineticsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.identifier.doi10.3390/math7050459


Files in this item

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
This work is under a Creative Commons License Atribución 4.0 Internacional