• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pre-Schauder Bases in Topological Vector Spaces

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/21741

DOI: 10.3390/sym11081026

ISSN: 2073-8994

Files
2019_260.pdf (275.5Kb)
Statistics
View statistics
Metrics and citations
 
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
García Pacheco, Francisco JavierAuthority UCA; Pérez Fernández, Francisco JavierAuthority UCA
Date
2019-08
Department
Matemáticas
Source
Symmetry 2019, 11(8), 1026
Abstract
A Schauder basis in a real or complex Banach space X is a sequence (en)n is an element of N in X such that for every x is an element of X there exists a unique sequence of scalars (lambda n)n is an element of N satisfying that x= n-ary sumation n=1 infinity lambda nen. Schauder bases were first introduced in the setting of real or complex Banach spaces but they have been transported to the scope of real or complex Hausdorff locally convex topological vector spaces. In this manuscript, we extend them to the setting of topological vector spaces over an absolutely valued division ring by redefining them as pre-Schauder bases. We first prove that, if a topological vector space admits a pre-Schauder basis, then the linear span of the basis is Hausdorff and the series linear span of the basis minus the linear span contains the intersection of all neighborhoods of 0. As a consequence, we conclude that the coefficient functionals are continuous if and only if the canonical projections are also continuous (this is a trivial fact in normed spaces but not in topological vector spaces). We also prove that, if a Hausdorff topological vector space admits a pre-Schauder basis and is w*-strongly torsionless, then the biorthogonal system formed by the basis and its coefficient functionals is total. Finally, we focus on Schauder bases on Banach spaces proving that every Banach space with a normalized Schauder basis admits an equivalent norm closer to the original norm than the typical bimonotone renorming and that still makes the basis binormalized and monotone. We also construct an increasing family of left-comparable norms making the normalized Schauder basis binormalized and show that the limit of this family is a right-comparable norm that also makes the normalized Schauder basis binormalized.
Subjects
Schauder basis; topological vector space; monotone basis; Hausdorff topology
Collections
  • Artículos Científicos [4205]
  • Articulos Científicos Matemáticas [139]
Atribución 4.0 Internacional
This work is under a Creative Commons License Atribución 4.0 Internacional

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestionsUser Support