• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On statistical convergence and strong Cesàro convergence by moduli

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/21970

DOI: 10.1186/s13660-019-2252-y

ISSN: 1029-242X

Files
2019_389.pdf (1.529Mb)
Statistics
View statistics
Metrics and citations
 
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
León Saavedra, FernandoAuthority UCA; Listán García, María del CarmenAuthority UCA; Pérez Fernández, Francisco JavierAuthority UCA; Romero de la Rosa, María PilarAuthority UCA
Date
2019-11
Department
Matemáticas
Source
Journal of Inequalities and Applications volume 2019, Article number: 298 (2019)
Abstract
In this paper we will establish a result by Connor, Khan and Orhan (Analysis 8:47–63, 1988; Publ. Math. (Debr.) 76:77–88, 2010) in the framework of the statistical convergence and the strong Cesàro convergence defined by a modulus function f . Namely, for every modulus function f , we will prove that a f -strongly Cesàro convergent sequence is always f -statistically convergent and uniformly integrable. The converse of this result is not true even for bounded sequences. We will characterize analytically the modulus functions f for which the converse is true. We will prove that these modulus functions are those for which the statistically convergent sequences are f -statistically convergent, that is, we show that Connor–Khan–Orhan’s result is sharp in this sense.
Subjects
Statistical convergence; Strong Cesaro convergence; Modulus function; Uniformly bounded sequence
Collections
  • Artículos Científicos [4817]
  • Artículos Científicos INDESS [384]
  • Articulos Científicos Matemáticas [161]
Atribución 4.0 Internacional
This work is under a Creative Commons License Atribución 4.0 Internacional

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestionsUser Support