Show simple item record

dc.contributor.authorLloret Vieira, Fernando Manuel
dc.contributor.authorJothiramalingam Sankaran, Kamatchi
dc.contributor.authorMillán Barba, Josué
dc.contributor.authorDesta, Derese
dc.contributor.authorRouzbahani, Rozita
dc.contributor.authorPobedinskas, Paulius
dc.contributor.authorGutiérrez Peinado, Marina
dc.contributor.authorBoyen, Hans-Gerd
dc.contributor.authorHaenen, Ken
dc.contributor.otherCiencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánicaes_ES
dc.contributor.otherFísica Aplicadaes_ES
dc.date.accessioned2020-09-10T09:34:37Z
dc.date.available2020-09-10T09:34:37Z
dc.date.issued2020-06
dc.identifier.issn2079-4991
dc.identifier.urihttp://hdl.handle.net/10498/23580
dc.description.abstractNanocrystalline diamond (NCD) field emitters have attracted significant interest for vacuum microelectronics applications. This work presents an approach to enhance the field electron emission (FEE) properties of NCD films by co-doping phosphorus (P) and nitrogen (N) using microwave plasma-enhanced chemical vapor deposition. While the methane (CH4) and P concentrations are kept constant, the N(2)concentration is varied from 0.2% to 2% and supplemented by H-2. The composition of the gas mixture is tracked in situ by optical emission spectroscopy. Scanning electron microscopy, atomic force microscopy (AFM), transmission electron microscopy, and Raman spectroscopy are used to provide evidence of the changes in crystal morphology, surface roughness, microstructure, and crystalline quality of the different NCD samples. The FEE results display that the 2% N(2)concentration sample had the best FEE properties, viz. the lowest turn-on field value of 14.3 V/mu m and the highest current value of 2.7 mu A at an applied field of 73.0 V/mu m. Conductive AFM studies reveal that the 2% N(2)concentration NCD sample showed more emission sites, both from the diamond grains and the grain boundaries surrounding them. While phosphorus doping increased the electrical conductivity of the diamond grains, the incorporation of N(2)during growth facilitated the formation of nano-graphitic grain boundary phases that provide conducting pathways for the electrons, thereby improving the FEE properties for the 2% N(2)concentrated NCD films.es_ES
dc.formatapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceNanomaterials 2020, 10(6), 1024es_ES
dc.subjectnanocrystalline diamondes_ES
dc.subjectfield electron emissiones_ES
dc.subjectphosphoruses_ES
dc.subjectnitrogenes_ES
dc.subjectconductive atomic force microscopyes_ES
dc.subjecttransmission electron microscopyes_ES
dc.titleImproved Field Electron Emission Properties of Phosphorus and Nitrogen Co-Doped Nanocrystalline Diamond Filmses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.3390/nano10061024


Files in this item

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
This work is under a Creative Commons License Atribución 4.0 Internacional