• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fall Detection from Electrocardiogram (ECG) Signals and Classification by Deep Transfer Learning

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/24747

DOI: 10.3390/info12020063

ISSN: 2078-2489

Files
2021_225.pdf (5.493Mb)
Statistics
View statistics
Metrics and citations
 
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
Sajid Butt, Fatima; La Blunda, Luigi; Wagner, Matthias F.; Schäfer, Jörg; Medina Bulo, María InmaculadaAuthority UCA; Gómez-Ullate Oteiza, DavidAuthority UCA
Date
2021-02
Department
Ingeniería Informática
Source
Information 2021, 12(2), 63
Abstract
Fall is a prominent issue due to its severe consequences both physically and mentally. Fall detection and prevention is a critical area of research because it can help elderly people to depend less on caregivers and allow them to live and move more independently. Using electrocardiograms (ECG) signals independently for fall detection and activity classification is a novel approach used in this paper. An algorithm has been proposed which uses pre-trained convolutional neural networks AlexNet and GoogLeNet as a classifier between the fall and no fall scenarios using electrocardiogram signals. The ECGs for both falling and no falling cases were obtained as part of the study using eight volunteers. The signals are pre-processed using an elliptical filter for signal noises such as baseline wander and power-line interface. As feature extractors, frequency-time representations (scalograms) were obtained by applying a continuous wavelet transform on the filtered ECG signals. These scalograms were used as inputs to the neural network and a significant validation accuracy of 98.08% was achieved in the first model. The trained model is able to distinguish ECGs with a fall activity from an ECG with a no fall activity with an accuracy of 98.02%. For the verification of the robustness of the proposed algorithm, our experimental dataset was augmented by adding two different publicly available datasets to it. The second model can classify fall, daily activities and no activities with an accuracy of 98.44%. These models were developed by transfer learning from the domain of real images to the medical images. In comparison to traditional deep learning approaches, the transfer learning not only avoids "reinventing the wheel," but also presents a lightweight solution to otherwise computationally heavy problems.
Subjects
electrocardiogram (ECG); wavelet transform; signal processing; transfer learning; human activity recognition; neural network
Collections
  • Artículos Científicos [4821]
  • Articulos Científicos Ing. Inf. [134]
Atribución 4.0 Internacional
This work is under a Creative Commons License Atribución 4.0 Internacional

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestionsUser Support