• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A mesoscopic simulator to uncover heterogeneity and evolutionary dynamics in tumors

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/24754

DOI: 10.1371/journal.pcbi.1008266

ISSN: 1553-734X

ISSN: 1553-7358 (internet)

Files
2021_231.pdf (2.787Mb)
Statistics
View statistics
Metrics and citations
 
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
Jiménez-Sánchez, Juan; Martínez Rubio, ÁlvaroAuthority UCA; Popov, Anton; Pérez-Beteta, Julián; Azimzade, Youness; Molina-García, David; Belmonte-Beitia, Juan; Calvo, Gabriel F.; Pérez-García, Víctor
Date
2021-02
Department
Matemáticas
Source
PLoS Comput Biol 17(2): e1008266
Abstract
Increasingly complex in silico modeling approaches offer a way to simultaneously access cancerous processes at different spatio-temporal scales. High-level models, such as those based on partial differential equations, are computationally affordable and allow large tumor sizes and long temporal windows to be studied, but miss the discrete nature of many key underlying cellular processes. Individual-based approaches provide a much more detailed description of tumors, but have difficulties when trying to handle full-sized real cancers. Thus, there exists a trade-off between the integration of macroscopic and microscopic information, now widely available, and the ability to attain clinical tumor sizes. In this paper we put forward a stochastic mesoscopic simulation framework that incorporates key cellular processes during tumor progression while keeping computational costs to a minimum. Our framework captures a physical scale that allows both the incorporation of microscopic information, tracking the spatio-temporal emergence of tumor heterogeneity and the underlying evolutionary dynamics, and the reconstruction of clinically sized tumors from high-resolution medical imaging data, with the additional benefit of low computational cost. We illustrate the functionality of our modeling approach for the case of glioblastoma, a paradigm of tumor heterogeneity that remains extremely challenging in the clinical setting.
Collections
  • Artículos Científicos [4821]
  • Articulos Científicos Matemáticas [161]
Atribución 4.0 Internacional
This work is under a Creative Commons License Atribución 4.0 Internacional

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestionsUser Support