• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spatio-temporal dynamics of virus and bacteria removal in dual-media contact-filtration for drinking water

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/24840

ISSN: 0043-1354

Files
JCR Article: Spatio-temporal dynamics of virus and bacteria removal in dual-media contact-filtration for drinking water (2.010Mb)
Statistics
View statistics
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
Nilsen, Vegard; Christensen, Ekaterina; Myrmel, Mette; Heistad, Arve
Date
2016-03-05
Department
Ingeniería Química y Tecnología de Alimentos
Source
Water Research 156 (2019) 9-22
Abstract
Microorganism removal efficiencies in deep bed filters vary with time and depth in the filter bed as the filter collects particles. Improved knowledge of such dynamics is relevant for the design, operation and microbial risk assessment of filtration processes for drinking water treatment. Here we report on a highresolution spatio-temporal characterization of virus and bacteria removal in a pilot-scale dual-media filter, operated in contact-filtration mode. Microorganisms investigated were bacteriophage Salmonella typhimurium 28B (plaque assay, n ¼ 154)), fRNA phage MS2 (plaque assay/RT-qPCR, n ¼ 87) and E. coli (Colilert-18, n ¼ 73). Microscopic and macroscopic filtration models were used to investigate and characterize the removal dynamics. Results show that ripening/breakthrough fronts for turbidity, viruses and E. coli migrated in a wavelike manner across the depth of the filter. Virus removal improved continuously throughout the filter cycle and viruses broke through almost simultaneously with turbidity. Ripening for E. coli took longer than ripening for turbidity, but the bacteria broke through before turbidity breakthrough. Instantaneous log-removal peaked at 3.2, 3.0 and 4.5 for 28B, MS2 and E. coli, respectively. However, true average logremoval during the period of stable effluent turbidity was significantly lower at 2.5, 2.3 and 3.6, respectively. Peak observed filter coefficients l were higher than predicted by ideal filtration theory. This study demonstrates the importance of carefully designed sampling regimes when characterizing microorganism removal efficiencies of deep bed filters.
Subjects
Drinking water; Filtration; Virus; Dynamics; Modeling
Collections
  • Artículos Científicos [4849]
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
This work is under a Creative Commons License Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestionsUser Support