Effect of Washing Treatment on the Textural Properties and Bioactivity of Silica/Chitosan/TCP Xerogels for Bone Regeneration

Files
Statistics
Metrics and citations
Share
Metadata
Show full item recordDate
2021-08Department
Anatomía Patológica, Biología Celular, Histología, Historia de la Ciencia, Medicina Legal y Forense y Toxicología; Física de la Materia Condensada; Materno-Infantil y RadiologíaSource
Int. J. Mol. Sci. 2021, 22(15), 8321Abstract
Silica (SiO2)/chitosan (CS) composite aerogels are bioactive when they are submerged in simulated body fluid (SBF), causing the formation of bone-like hydroxyapatite (HAp) layer. Silica-based hybrid aerogels improve the elastic behavior, and the combined CS modifies the network entanglement as a crosslinking biopolymer. Tetraethoxysilane (TEOS)/CS is used as network precursors by employing a sol-gel method assisted with high power ultrasound (600 W). Upon gelation and aging, gels are dried in supercritical CO2 to obtain monoliths. Thermograms provide information about the condensation of the remaining hydroxyl groups (400-700 degrees C). This step permits the evaluation of the hydroxyl group's content of 2 to 5 OH nm(-2). The formed Si-OH groups act as the inductor of apatite crystal nucleation in SBF. The N-2 physisorption isotherms show a hysteresis loop of type H3, characteristic to good interconnected porosity, which facilitates both the bioactivity and the adhesion of osteoblasts cells. After two weeks of immersion in SBF, a layer of HAp microcrystals develops on the surface with a stoichiometric Ca/P molar ratio of 1.67 with spherulite morphology and uniform sizes of 6 mu m. This fact asserts the bioactive behavior of these hybrid aerogels. Osteoblasts are cultured on the selected samples and immunolabeled for cytoskeletal and focal adhesion expression related to scaffold nanostructure and composition. The initial osteoconductive response observes points to a great potential of tissue engineering for the designed composite aerogels.