• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real-time detection of uncalibrated sensors using neural networks

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/26123

DOI: 10.1007/s00521-021-06865-z

ISSN: 0941-0643

ISSN: 1433-3058 (internet)

Files
APC_2021_079.pdf (1.012Mb)
Statistics
View statistics
Metrics and citations
 
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
Muñoz Molina, Luis J.; Cazorla Piñar, Ignacio; Domínguez Morales, Juan P.; Lafuente Molinero, LuisAuthority UCA; Pérez Peña, FernandoAuthority UCA
Date
2022-01
Department
Ingeniería en Automática, Electrónica, Arquitectura y Redes de Computadores; Matemáticas
Source
Neural Comput & Applic (2022)
Abstract
Nowadays, sensors play a major role in several fields, such as science, industry and everyday technology. Therefore, the information received from the sensors must be reliable. If the sensors present any anomalies, serious problems can arise, such as publishing wrong theories in scientific papers, or causing production delays in industry. One of the most common anomalies are uncalibrations. An uncalibration occurs when the sensor is not adjusted or standardized by calibration according to a ground truth value. In this work, an online machine-learning based uncalibration detector for temperature, humidity and pressure sensors is presented. This development integrates an artificial neural network as the main component which learns from the behavior of the sensors under calibrated conditions. Then, after being trained and deployed, it detects uncalibrations once they take place. The obtained results show that the proposed system is able to detect the 100% of the presented uncalibration events, although the time response in the detection depends on the resolution of the model for the specific location, i.e., the minimum statistically significant variation in the sensor behavior that the system is able to detect. This architecture can be adapted to different contexts by applying transfer learning, such as adding new sensors or having different environments by re-training the model with minimum amount of data.
Subjects
Neural networks; Sensors; Uncalibrations; Sensor anomalies; Transfer learning
Collections
  • Artículos Científicos [4821]
  • Articulos Científicos Ing. Sis. Aut. [56]
  • Articulos Científicos Matemáticas [161]
Atribución 4.0 Internacional
This work is under a Creative Commons License Atribución 4.0 Internacional

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestionsUser Support