• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Site Characterization Index for Continuous Power Quality Monitoring Based on Higher-order Statistics

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/26494

DOI: 10.35833/MPCE.2020.000041

ISSN: 2196-5625

ISSN: 2196-5420

Files
2022_095.pdf (3.323Mb)
Statistics
View statistics
Metrics and citations
 
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
Florencias Oliveros, OliviaAuthority UCA; González de la Rosa, Juan JoséAuthority UCA; Sierra Fernández, José MaríaAuthority UCA; Agüera Pérez, AgustínAuthority UCA; Espinosa Gavira, Manuel JesúsAuthority UCA; Palomares Salas, José CarlosAuthority UCA
Date
2022-01
Department
Ingeniería en Automática, Electrónica, Arquitectura y Redes de Computadores
Source
Journal of Modern Power Systems and Clean Energy ( Volume: 10, Issue: 1, January 2022)
Abstract
The high penetration of distributed generation (DG) has set up a challenge for energy management and consequently for the monitoring and assessment of power quality (PQ). Besides, there are new types of disturbances owing to the uncontrolled connections of non-linear loads. The stochastic behaviour triggers the need for new holistic indicators which also deal with big data of PQ in terms of compression and scalability so as to extract the useful information regarding different network states and the prevailing PQ disturbances for future risk assessment and energy management systems. Permanent and continuous monitoring would guarantee the report to claim for damages and to assess the risk of PQ distortions. In this context, we propose a measurement method that postulates the use of two-dimensional (2D) diagrams based on higher-order statistics (HOSs) and a previous voltage quality index that assesses the voltage supply waveform in a continous monitoring campaign. Being suitable for both PQ and reliability applications, the results conclude that the inclusion of HOS measurements in the industrial metrological reports helps characterize the deviations of the voltage supply waveform, extracting the individual customers' pattern fingerprint, and compressing the data from both time and spatial aspects. The method allows a continuous and robust performance needed in the SG framework. Consequently, the method can be used by an average consumer as a probabilistic method to assess the risk of PQ deviations in site characterization.
Subjects
Continuous statistical monitoring; big data; data compression; higher-order statistics (HOSs); power quality (PQ)
Collections
  • Artículos Científicos [4307]
  • Articulos Científicos Ing. Sis. Aut. [46]
  • Artículos Científicos IVAGRO [242]

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestionsUser Support