• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Further results on packing related parameters in graphs

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/26650

DOI: 10.7151/dmgt.2262

ISSN: 1234-3099

ISSN: 2083-5892

Files
2022_223.pdf (280.6Kb)
Statistics
View statistics
Metrics and citations
 
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
Mojdeh, Doost Ali; Samadi, Babak; González Yero, IsmaelAuthority UCA
Date
2022-05
Department
Matemáticas
Source
Discussiones Mathematicae - Graph Theory, Vol. 42, Núm. 2, pp. 333-348
Abstract
Given a graph G = (V, E), a set B subset of V (G) is a packing in G if the closed neighborhoods of every pair of distinct vertices in B are pairwise disjoint. The packing number rho(G) of G is the maximum cardinality of a packing in G. Similarly, open packing sets and open packing number are defined for a graph G by using open neighborhoods instead of closed ones. We give several results concerning the (open) packing number of graphs in this paper. For instance, several bounds on these packing parameters along with some Nordhaus-Gaddum inequalities are given. We characterize all graphs with equal packing and independence numbers and give the characterization of all graphs for which the packing number is equal to the independence number minus one. In addition, due to the close connection between the open packing and total domination numbers, we prove a new upper bound on the total domination number gamma(t)(T) for a tree T of order n >= 2 improving the upper bound gamma(t)(T) <= (n + s)/2 given by Chellali and Haynes in 2004, in which s is the number of support vertices of T.
Subjects
packing number; open packing number; independence number; Nordhaus-Gaddum inequality; total domination number
Collections
  • Artículos Científicos [4098]
  • Articulos Científicos Matemáticas [130]

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestionsUser Support