• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lie symmetries and exact solutions for a fourth-order nonlinear diffusion equation

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/26982

DOI: 10.1002/mma.8387

ISSN: 0170-4214

ISSN: 1099-1476

Files
APC_2022_055.pdf (5.607Mb)
Statistics
View statistics
Metrics and citations
 
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
Márquez Lozano, Almudena del PilarAuthority UCA; Garrido Letrán, Tamara MaríaAuthority UCA; Recio Rodríguez, ElenaAuthority UCA; Rosa Silva, Rafael de laAuthority UCA
Date
2022-06
Department
Matemáticas
Source
Math Meth Appl Sci. 2022;1–14.
Abstract
In this paper, we consider a fourth-order nonlinear diffusion partial differential equation, depending on two arbitrary functions. First, we perform an analysis of the symmetry reductions for this parabolic partial differential equation by applying the Lie symmetry method. The invariance property of a partial differential equation under a Lie group of transformations yields the infinitesimal generators. By using this invariance condition, we present a complete classification of the Lie point symmetries for the different forms of the functions that the partial differential equation involves. Afterwards, the optimal systems of one-dimensional subalgebras for each maximal Lie algebra are determined, by computing previously the commutation relations, with the Lie bracket operator, and the adjoint representation. Next, the reductions to ordinary differential equations are derived from the optimal systems of one-dimensional subalgebras. Furthermore, we study travelling wave reductions depending on the form of the two arbitrary functions of the original equation. Some travelling wave solutions are obtained, such as solitons, kinks and periodic waves.
Subjects
diffusion equations; exact solutions; Lie group analysis; symmetry reductions
Collections
  • Artículos Científicos [4841]
  • Artículos Científicos INIBICA [495]
  • Articulos Científicos Matemáticas [162]
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
This work is under a Creative Commons License Attribution-NonCommercial-NoDerivatives 4.0 Internacional

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestionsUser Support