• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of Chronological Age in Healthy Elderly Subjects with Machine Learning from MRI Brain Segmentation and Cortical Parcellation

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/27224

DOI: 10.3390/brainsci12050579

ISSN: 2076-3425

Files
2022_389.pdf (15.98Mb)
Statistics
View statistics
Metrics and citations
 
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
Gómez Ramírez, Jaime D.; Fernández-Blázquez, Miguel A.; González Rosa, Javier JesúsAuthority UCA
Date
2022-05
Department
Psicología
Source
Brain Sciences, Vol. 12, Núm. 5
Abstract
Normal aging is associated with changes in volumetric indices of brain atrophy. A quantitative understanding of age-related brain changes can shed light on successful aging. To investigate the effect of age on global and regional brain volumes and cortical thickness, 3514 magnetic resonance imaging scans were analyzed using automated brain segmentation and parcellation methods in elderly healthy individuals (69–88 years of age). The machine learning algorithm extreme gradient boosting (XGBoost) achieved a mean absolute error of 2 years in predicting the age of new subjects. Feature importance analysis showed that the brain-to-intracranial-volume ratio is the most important feature in predicting age, followed by the hippocampi volumes. The cortical thickness in temporal and parietal lobes showed a superior predictive value than frontal and occipital lobes. Insights from this approach that integrate model prediction and interpretation may help to shorten the current explanatory gap between chronological age and biological brain age.
Subjects
aging; MRI; machine learning; XGBoost; feature importance; shapley values; brain segmentation; cortical parcellation; age prediction; biological aging
Collections
  • Artículos Científicos [4849]
  • Artículos Científicos INDESS [386]
  • Artículos Científicos INIBICA [496]
  • Articulos Científicos Psicología [168]
Atribución 4.0 Internacional
This work is under a Creative Commons License Atribución 4.0 Internacional

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestionsUser Support