• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Constrained Naive Bayes with application to unbalanced data classification

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/27270

DOI: 10.1007/s10100-021-00782-1

ISSN: 1435-246X

Files
SC_2021_618.pdf (486.8Kb)
Statistics
View statistics
Metrics and citations
 
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
Blanquero, Rafael; Carrizosa, Emilio; Ramírez Cobo, JosefaAuthority UCA; Sillero-Denamiel, M. Remedios
Date
2021-10
Department
Estadística e Investigación Operativa
Source
Central European Journal of Operations Research
Abstract
The Naive Bayes is a tractable and efficient approach for statistical classification. In general classification problems, the consequences of misclassifications may be rather different in different classes, making it crucial to control misclassification rates in the most critical and, in many realworld problems, minority cases, possibly at the expense of higher misclassification rates in less problematic classes. One traditional approach to address this problem consists of assigning misclassification costs to the different classes and applying the Bayes rule, by optimizing a loss function. However, fixing precise values for such misclassification costs may be problematic in realworld applications. In this paper we address the issue of misclassification for the Naive Bayes classifier. Instead of requesting precise values of misclassification costs, threshold values are used for different performance measures. This is done by adding constraints to the optimization problem underlying the estimation process. Our findings show that, under a reasonable computational cost, indeed, the performance measures under consideration achieve the desired levels yielding a user-friendly constrained classification procedure.
Subjects
Probabilistic classification; Constrained optimization; Parameter estimation; Efficiency measures; Naïve Bayes
Collections
  • Artículos Científicos [4307]
  • Articulos Científicos Est. I.O. [101]
Atribución 4.0 Internacional
This work is under a Creative Commons License Atribución 4.0 Internacional

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestionsUser Support