• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

New insights about the serine/threonine protein kinase substrates from Mycobacterium tuberculosis using molecular docking, quantum similarity analysis and DFT calculations

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/27292

DOI: 10.12688/F1000RESEARCH.28078.1

ISSN: 1759-796X

Files
SC_2021_620.pdf (9.649Mb)
Statistics
View statistics
Metrics and citations
 
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
Morales-Bayuelo, Alejandro; Sánchez Márquez, JesúsAuthority UCA
Date
2021
Department
Química Física
Source
F1000Research, Vol. 10, pp. 1-25
Abstract
Background: The protein kinases present in the human body have received a lot of attention because of the interest in their use as therapeutic targets. However, little is known about the protein kinases associated with tuberculosis. For these reasons, this research investigates a new point of view regarding the crystallized serine/threonine protein kinases Pkn A, B and G of Mycobacterium tuberculosis. Methods: The conformational analysis shows a DFG-in motif in Pkn B and G and a DFG-out motif in Pkn A. For all the protein kinases that have been studied, the gatekeeper residue is methionine. A study of the protein kinases with their ligands was also conducted to find new insights on the binding site with a series of ligands associated to protein kinases Pkn A, B and G through molecular docking. The residues with hydrogen bonds on the hinge zone of Pkn A are GLU96 and VAL 98, of Pkn B are GLU 93 and VAL 95 and of Pkn G are GLU233 and VAL235. Results: The results show the H-bond acceptor and H-bond donor sites on the hinge zone to all ligands, establishing a structural model of the ligands on the active site with two or three interactions in this zone. This interaction model was validated using density functional theory calculations (by means of net charges and images of the electrostatic potential) and molecular quantum similarity analysis, showing a high correlation between the electronic and steric effects in each ATP complex studied. Conclusions: In this work we can see that the interactions of the hinge zone are characterized by the key factor of one or two H-bonds acceptors and one H-bond donor in the ligands of this zone. The quantum similarity analysis shows good correlation between the steric and electronic effects in each ATP complex. © 2021. Morales-Bayuelo A and Sánchez-Márquez J
Subjects
Mycobacterium tuberculosis; Serine/Threonine Protein Kinases A, B, G; Molecular Docking; Molecular Quantum Similarity Analysis; Electrostatic Interactions
Collections
  • Artículos Científicos [5002]
  • Artículos Científicos IMEYMAT [197]
  • Articulos Científicos Quim. Fis. [102]
Atribución 4.0 Internacional
This work is under a Creative Commons License Atribución 4.0 Internacional

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestionsUser Support