• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mutation-inspired symbolic execution for software testing

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/27463

DOI: 10.1049/sfw2.12063

ISSN: 1751-8814

Files
2022_458.pdf (607.5Kb)
Statistics
View statistics
Metrics and citations
 
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
Valle Gómez, Kevin JesúsAuthority UCA; García Domínguez, Antonio; Delgado Pérez, PedroAuthority UCA; Medina Bulo, María InmaculadaAuthority UCA
Date
2022-06
Department
Ingeniería Informática
Source
IET Software, Vol. 16, Núm. 5, pp. 478-492
Abstract
Software testing is a complex and costly stage during the software development lifecycle. Nowadays, there is a wide variety of solutions to reduce testing costs and improve test quality. Focussing on test case generation, Dynamic Symbolic Execution (DSE) is used to generate tests with good structural coverage. Regarding test suite evaluation, Mutation Testing (MT) assesses the detection capability of the test cases by introducing minor localised changes that resemble real faults. DSE is however known to produce tests that do not have good mutation detection capabilities: in this paper, the authors set out to solve this by combining DSE and MT into a new family of approaches that the authors call Mutation-Inspired Symbolic Execution (MISE). First, this known result on a set of open source programs is confirmed: DSE by itself is not good at killing mutants, detecting only 59.9% out of all mutants. The authors show that a direct combination of DSE and MT (naive MISE) can produce better results, detecting up to 16% more mutants depending on the programme, though at a high computational cost. To reduce these costs, the authors set out a roadmap for more efficient versions of MISE, gaining its advantages while avoiding a large part of its additional costs.
Collections
  • Artículos Científicos [4841]
  • Articulos Científicos Ing. Inf. [135]
Atribución-NoComercial 4.0 Internacional
This work is under a Creative Commons License Atribución-NoComercial 4.0 Internacional

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestionsUser Support