• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Phosphorus and water supply independently control productivity and soil enzyme activity responses to elevated CO2 in an understorey community from a Eucalyptus woodland

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/27843

DOI: 10.1007/s11104-022-05763-0

ISSN: 1573-5036

Files
APC_2022_137.pdf (1.241Mb)
Statistics
View statistics
Metrics and citations
 
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
Piñeiro Nevado, JuanAuthority UCA; Ochoa Hueso, RaúlAuthority UCA; Serrano‑Grijalva, Lilia; Power, S.A.
Date
2022-11
Department
Biología
Source
Plant and Soil
Abstract
Aims While it is well-established that nitrogen (N) availability regulates elevated [CO2] (eCO(2)) effects on plant growth and soil carbon (C) storage in N-limited environments, there are fewer studies investigating the role of phosphorous (P) supply on such responses in P-limited environments. In this study, we explored whether P fertilization influences the response of plant growth, soil enzyme activity and C fluxes to eCO(2), and determined how different levels of water availability regulate these processes. Methods We used soil collected from a temperate, P-limited Eucalyptus woodland containing the native soil seed bank to grow a potted replica of local understory communities. We exposed the emerging communities to eCO(2) under two contrasting water levels and two levels of P fertilization. We assessed plant biomass allocation, the rhizosphere activity of extracellular enzymes related to C, N and P cycles, and pot-level CO2 fluxes. Results The positive effects of eCO(2) on plant production and ecosystem C dynamics were strongly constrained by low levels of P availability. Enhanced water supply increased rhizosphere enzyme activity with minor impacts on plant biomass responses to eCO(2.) Our data also suggest that plant and microbial mechanisms that increase nutrient release from SOM may not be able to overcome this P limitation. Conclusions While current Earth System Models predict positive feedback responses of terrestrial ecosystems on C storage under eCO(2), here we emphasize the importance of accounting for the widespread phenomenon of P-limitation in such responses.
Subjects
Elevated CO2; Rhizosphere; Enzyme activity; Phosphorus; Plant Production
Collections
  • Artículos Científicos [4845]
  • Articulos Científicos Did. E. Fis. [188]
Atribución 4.0 Internacional
This work is under a Creative Commons License Atribución 4.0 Internacional

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestionsUser Support