• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Inactivation efficacy and reactivation of fecal bacteria with a flow-through LED ultraviolet reactor: Intraspecific response prevails over interspecific differences

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/27946

DOI: 10.1016/j.jwpe.2023.103497

ISSN: 2214-7144

Files
APC_2023_005.pdf (779.8Kb)
Statistics
View statistics
Metrics and citations
 
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
Romero Martínez, LeonardoAuthority UCA; Duque-Sarago, Paola; González-Martín, Claudia; Moreno Andrés, JavierAuthority UCA; Acevedo Merino, AsunciónAuthority UCA; Nebot Sanz, EnriqueAuthority UCA
Date
2023-04
Department
Tecnologías del Medio Ambiente
Source
Journal of Water Process Engineering, Vol. 52
Abstract
Treatment with ultraviolet (UV) light is a common option for inactivating waterborne organisms. The mercury vapor lamps conventionally used as a source of UV-C light for water disinfection are eventually replaced by light emitter diodes (LEDs) in the middle term due to their higher efficiency and lack of hazardous materials. Nonetheless, biological mechanisms for repairing UV damage caused by the UV treatment are some of its significant undesirable features. The objective of this study is to evaluate and compare the UV-resistance and the reactivation degree in different strains of E. coli and E. faecalis treated with a flow-through reactor equipped with LEDs with an emission range between 265 and 285 nm. The treated organisms were subjected to various illumination regimes after the UV irradiation. The results obtained indicated that intraspecific differences between the strains of E. coli were greater than the interspecific differences with respect to E. faecalis in terms of UV-resistance and repairing potential. The UV doses necessary to achieve four log-reductions ranged from 10.2 to 16.3 mJ cm−2 for E. coli and from 11.1 to 11.4 for mJ cm−2 for E. faecalis. Dark repair was not observed within 24 h after the UV irradiation whereas the degree of photorepair depended on both the bacteria strain and the applied UV dose. The exposure of the irradiated organisms to an illuminated environment entailed and increasing between the 18 % and the 160 % of the UV dose required to achieve four log-reductions. © 2023 The Author(s)
Subjects
Water disinfection; Ultraviolet inactivation; Light emitting diodes (LEDs); Photoreactivation; Fecal bacteria
Collections
  • Artículos Científicos [4803]
  • Artículos Científicos INMAR [412]
  • Articulos Científicos Tec. Med. Amb. [102]
Atribución 4.0 Internacional
This work is under a Creative Commons License Atribución 4.0 Internacional

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestionsUser Support