• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessing the Role of Social Bots During the COVID-19 Pandemic: Infodemic, Disagreement, and Criticism

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/28080

DOI: 10.2196/36085

ISSN: 1438-8871

Files
SC2022_535.pdf (686.9Kb)
Statistics
View statistics
Metrics and citations
 
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
Sanz Suarez-Lledo, Víctor JoséAuthority UCA; Álvarez Gálvez, JavierAuthority UCA
Date
2022-08
Department
Biomedicina, Biotecnología y Salud Pública
Source
Journal of Medical Internet Research, Vol. 24, Núm. 8
Abstract
Background: Social media has changed the way we live and communicate, as well as offering unprecedented opportunities to improve many aspects of our lives, including health promotion and disease prevention. However, there is also a darker side to social media that is not always as evident as its possible benefits. In fact, social media has also opened the door to new social and health risks that are linked to health misinformation. Objective: This study aimed to study the role of social media bots during the COVID-19 outbreak. Methods: The Twitter streaming API was used to collect tweets regarding COVID-19 during the early stages of the outbreak. The Botometer tool was then used to obtain the likelihood of whether each account is a bot or not. Bot classification and topic-modeling techniques were used to interpret the Twitter conversation. Finally, the sentiment associated with the tweets was compared depending on the source of the tweet. Results: Regarding the conversation topics, there were notable differences between the different accounts. The content of nonbot accounts was associated with the evolution of the pandemic, support, and advice. On the other hand, in the case of self-declared bots, the content consisted mainly of news, such as the existence of diagnostic tests, the evolution of the pandemic, and scientific findings. Finally, in the case of bots, the content was mostly political. Above all, there was a general overriding tone of criticism and disagreement. In relation to the sentiment analysis, the main differences were associated with the tone of the conversation. In the case of self-declared bots, this tended to be neutral, whereas the conversation of normal users scored positively. In contrast, bots tended to score negatively. Conclusions: By classifying the accounts according to their likelihood of being bots and performing topic modeling, we were able to segment the Twitter conversation regarding COVID-19. Bot accounts tended to criticize the measures imposed to curb the pandemic, express disagreement with politicians, or question the veracity of the information shared on social media.
Subjects
infodemics; social media; misinformation; epidemics; outbreaks; COVID-19; infodemiology; health promotion; pandemic; chatbot; social media bot; Twitter stream; Botometer; peer support
Collections
  • Artículos Científicos [4637]
  • Articulos Científicos Biomedicina [201]
  • Artículos Científicos INDESS [350]
Atribución 4.0 Internacional
This work is under a Creative Commons License Atribución 4.0 Internacional

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestionsUser Support