RT info:eu-repo/semantics/article
T1 Hamiltonian Structure, Symmetries and Conservation Laws for a Generalized (2 + 1)-Dimensional Double Dispersion Equation
A1 Recio, Elena
A1 Garrido, T.M.
A1 de la Rosa, Rafael
A1 Bruzón Gallego, María de los Santos
A2 Matemáticas
K1 Lie symmetry
K1 conservation law
K1 double dispersion equation
K1 Boussinesq equation
AB This paper considers a generalized double dispersion equation depending on a nonlinearfunction f (u) and four arbitrary parameters. This equation describes nonlinear dispersive waves in2 + 1 dimensions and admits a Lagrangian formulation when it is expressed in terms of a potentialvariable. In this case, the associated Hamiltonian structure is obtained. We classify all of the Liesymmetries (point and contact) and present the corresponding symmetry transformation groups.Finally, we derive the conservation laws from those symmetries that are variational, and we discussthe physical meaning of the corresponding conserved quantities.
PB MDPI
SN 2073-8994
YR 2019
FD 2019-08
LK http://hdl.handle.net/10498/21742
UL http://hdl.handle.net/10498/21742
LA eng
DS Repositorio Institucional de la Universidad de Cádiz
RD 26-sep-2020