The role of biological-hydrodynamic interactions in determining the functioning of benthic ecosystems

Edward P. Morris¹, G. Peralta¹, F. G. Brun¹, T. J. Bouma⁴, I. E. Hendriks³, J. Benavente², M. Lara¹, V. Gonzalez-Ortiz¹, T. van Engeland⁵, L. van Duren⁶ and J. L. Perez-Llorens¹

¹ Dpt. Biology and ²Dpt. Earth Sciences, Faculty of Marine and Environmental Sciences, Univ. Cadiz, Puerto Real, Spain

³ IMEDEA (CSIC-UIB), Institut Mediterráneo de Estudios Avanzados, Esporles (Mallorca), Spain

⁴ Spatial Ecology and ⁵Ecosystem studies, CEME-NIOO-KNAW, Yerseke, The Netherlands

⁶ DELTARES, Delft, The Netherlands
Shallow coastal areas

- Hotspots for biogeochemical transformations
- High biodiversity
- Epibenthic organisms common
Epibenthic organisms

• Many considered to be “ecosystem engineers”
 – Jones et al. 1994 OIKOS 69:373-386
 – Allogenic: change via transforming materials
 – Autogenic: change via own physical structures

• Interactions with hydrodynamics
What are bio-hydrodynamic interactions?

- Unidirectional flow
- Waves (orbital flow)
- Canopy water flow (Qc)
- Shear stress
- Canopy reconfiguration
- Mixing (TKE)
- Freestream layer
- Mixing, turbulent boundary layer
- Low movement layer

Species:
- C. racemosa
- C. taxifolia
- C. prolifer
- Z. noltii
- C. nodosa
- P. oceanica
Inter-specific differences in ammonium uptake:

N uptake rates and Q_c of *C. nodosa* ~ double *Z. noltii*

Mass transfer

Morris et al. 2008
- \(\text{NH}_4 \) uptake is spatially explicit
- Waves dampen spatial effect

Morris et al. 2008, Brun et al. In prep
Inter-specific boundaries

Cymodocea nodosa Caulerpa prolifera
\(^{15}\text{NH}_4\) with inert marker (uranine)

Distribution of tracer and plant samples = N uptake corrected for \([^{15}\text{N}\text{_{water}}]\)
Vertical position determines uptake of functional groups

Mass transfer

Uptake (µmol N (g DW)⁻¹ h⁻¹)

- Epiphytes
- C. nodosa
- C. proliferans
- Gracillaria sp.

U (m s⁻¹)

0.000 0.010 0.020 0.030
Trapping is linked to species-specific canopy properties

Surface area of structures within flume (m2)

$k \sim$ probability that particles are removed from the water column

Hendriks et al. 2009
Food availability

- Seagrasses influence feeding of cockles
- Animal communities have group specific food preferences

Brun et al. 2009, Morris et al. in prep
Increase in macrofauna abundance and species diversity

Abundance (individual m\(^{-2}\))

Species density (number m\(^{-2}\))

Gonzalez-Ortiz et al. In prep
Autogenic effects on macrofauna abundance

Mimics exclude allogenic engineering effects

Brun et al. In prep
Spatially-explicit effects on macrofauna abundance

S. Plana
Surface filter feeder

H. diversicolor
Deposit feeder

Brun et al. In prep
Summary

- Biometric measures *indicate* autogenic effects on near-bed hydrodynamics
- Potential effects on; particle trapping, bed protection, food availability and N uptake
- *Spatially-explicit* influence on biodiversity and *presumably* ecosystem metabolism-carbon burial
Acknowledgements

• Regional government of Andalucia projects FUNDIV (PO7-RNM-2516) and PAMBIO (PO8-RNM-3783)
• Spanish national projects EVAMARIA (CTM2005-00395/MAR) and iMACHydro (CTM2008-0012/MAR)
• European Marie Curie transfer of knowledge fellowship, SEAPAIID (MTKD-CT-2004-50925)
• MarBEF benthic hydrodynamic interactions work-group
• Colleagues, collaborators and numerous students for support and help. www.famar.wordpress.com

Thanks