Phytotoxins from *Tithonia diversifolia*

Maria A. F. M. Miranda, ‡ Rosa M. Varela, † Ascension Torres, † José M. G. Molinillo, ‡ Sonia C. J. Gualtieri, ‡ and Francisco A. Macías*†‡

*Grupo de Alelopátia, Departamento de Química Orgânica, Faculdade de Ciências, Universidade de Cádiz, Campus de Excelencia Internacional Agroalimentario, ceiA3, Instituto de Biomoleculas (INBIO), C/República Saharaui n, 7, 11510-Puerto Real, Cádiz, Spain

‡Departamento de Botânica, Universidade Federal de São Carlos, 1356905-São Carlos, São Paulo, Brazil

ABSTRACT: *Tithonia diversifolia* (Mexican sunflower) is a dominant plant of the Asteraceae family, which suggests it produces allelochemicals that interfere with the development of surrounding plants. The study described herein was conducted to identify the compounds that have phytotoxic activity in *T. diversifolia* extracts. Ethyl acetate extracts of the leaves, stems, and roots showed significant inhibition of wheat coleoptile growth, and the leaf extract had similar inhibitory effects to a commercial herbicide. Fourteen compounds, 12 of which were sesquiterpene lactones, have been isolated. Two sesquiterpene lactones are reported for the first time and were isolated as an inseparable mixture of 8β-O-(2-methylbutryoyl)-tirotundin (4) and 8β-O-(isovaleroyl)tirotundin (5). Their structures were determined by spectroscopic analysis, including NMR techniques and mass spectrometry. The sesquiterpene lactones 1,4,6-methoxydiversifolin (6), tagitinin A (7), and tagitinin C (8) were the major products identified. These compounds were active on etiolated wheat coleoptiles, seed germination, and the growth of STS and weeds. The phytotoxic activity shown by these sesquiterpene lactones indicates that they are the compounds responsible for the activity exhibited by the initial extracts.

Received: January 14, 2015
Published: April 16, 2015

Invasive species are the second leading cause of global diversity loss after habitat fragmentation. Invasive plants can affect ecological systems by altering many communities and ecosystems, outcompeting native flora, and establishing monocultures. Some of these species were introduced initially as crops but were considered subsequently as weeds. Attempts have been made to explain invasive plant mechanisms through numerous ecological studies. It is worth considering the possibility that some invasive species may gain an advantage by virtue of having secondary compounds that present novel challenges to native species.

Allelopathy can be defined as the positive or negative effects on the growth of other plants caused by secondary metabolites produced by plants and released into the environment. These compounds can be released from plants by volatilization, root exudation, leaching, and decomposition of plant material. It has been demonstrated that the phenomenon of allelopathy is an important ecological mechanism that influences the dominance and succession of plants, climax formation, communities, agriculture management, and productivity.

The identification of allelochemicals from invasive plants is an important step in gaining a complete understanding of the allelopathic phenomenon. Such information may provide an insight into the establishment of invasive plants in a given environment and may also guide the development of new tools for natural herbicide models that are more environmentally benign than synthetic pesticides.

Tithonia diversifolia (Hemsl.) A. Gray (Mexican sunflower) is a perennial shrub of the family Asteraceae. It originated in Mexico and Central America, but it was introduced into a wide range of other countries for ornamental proposes or for its pharmacological action, its use as green manure, and the control of soil erosion. However, this plant has become a problem due its invasive behavior in several countries.

Many classes of secondary metabolites have been isolated from *Tithonia* species, including sesquiterpenoids, diterpenoids, and flavonoids. More than 150 compounds have been isolated from *T. diversifolia*, and these include the sesquiterpene lactones tirotundin, tagitinin A, and tagitinin C.

Sesquiterpene lactones are present in large quantities in the family Asteraceae, and they are an important class of secondary metabolites responsible for pharmacological and phytotoxic activities. The sesquiterpene lactones tagitinin A and tagitinin C were reported to reduce seed germination and seedling growth of certain plants. This phytotoxicity suggests...
the possibility of allelopathic activity on the growth of other plants under natural conditions. The incorporation of dry *T. diversifolia* leaves into the soil was reported to inhibit the growth of rice seedlings. In other studies it was found that *T. diversifolia* aqueous extracts show phytotoxic activity on the germination and growth of *Amaranthus* species.

The aim of the study described herein was to bioprospect *T. diversifolia* extracts through the isolation and purification of secondary metabolites with phytotoxic activity. It was envisaged that the results could explain the invasive behavior of the plant and that the compounds identified could be used as natural herbicide models in the future. In this study, plant material (roots, leaves, and stems) was extracted using ethyl acetate and methanol as solvents. Extracts and purified compounds were tested in etiolated wheat coleoptile and phytotoxicity bioassays. The most phytotoxic extract was fractionated in order to isolate and identify its chemical components. The structures of the compounds were elucidated by spectroscopic studies. The bioactivity profiles of the isolated compounds were assayed on the standard target species (STS) lettuce, watercress, tomato, and onion) and on the weeds barnyardgrass and brachiaria. The Poaceae species barnyardgrass (*Echinochloa crus-galli* L.) and brachiaria (*Urochloa decumbens* (Stapf) R.D. Webster) are important weed species throughout the world. Barnyardgrass is a weed that is native to Asia, but it invades rice plantations around the world. Brachiaria is especially invasive in South America. Our hypothesis is that allelochemicals from *T. diversifolia* have phytotoxic potential, and they can inhibit the development of other invasive weeds such as those tested in this study.

RESULTS AND DISCUSSION

Dried leaves (60 g), stems (60 g), and roots (60 g) of *Tithonia diversifolia*, defatted with hexane, were extracted with ethyl acetate (EtOAc, 1.04%, 0.14%, and 0.18% yield, respectively) and methanol (MeOH, 3.28%, 2.15%, and 1.05% yield, respectively). Chlorophyll was removed from the leaf extracts. The extracts, at concentrations of 0.8, 0.4, and 0.2 mg mL\(^{-1}\), were subjected to an etiolated wheat coleoptile bioassay. This test is used widely to evaluate the sensitivity of wheat to a wide range of bioactive substances.

The leaf, stem, and root EtOAc extracts generally showed higher inhibition than the methanol (MeOH) extracts. The leaf EtOAc extract was the most active, and this also showed the best activity profile, as activity was retained upon dilution, even at 0.2 mg mL\(^{-1}\) (−74%) (Figure 1).

In order to compare the activities of the extracts, IC\(_{50}\) values were calculated using a sigmoidal dose–response model. The results allowed the extracts to be ranked in decreasing order of activity as follows: EtOAc leaf extract (IC\(_{50}\) = 73 μg mL\(^{-1}\), \(r^2 = 0.9955\) > MeOH leaf extract (IC\(_{50}\) = 190 μg mL\(^{-1}\), \(r^2 = 0.9988\) > EtOAc stem extract (IC\(_{50}\) = 240 μg mL\(^{-1}\), \(r^2 = 0.9994\) > EtOAc root extract (IC\(_{50}\) = 720 μg mL\(^{-1}\), \(r^2 = 0.9983\) > MeOH root extract (IC\(_{50}\) = 1520 μg mL\(^{-1}\), \(r^2 = 0.9627\) > MeOH stem extract (IC\(_{50}\) = 3670 μg mL\(^{-1}\), \(r^2 = 0.9554\). It can be seen from the IC\(_{50}\) values that the leaf EtOAc, leaf MeOH, and stem EtOAc extracts were the most active ones. The differences in the activity profiles and the similarity between the leaf MeOH and stem EtOAc extracts suggested that the most active metabolites are of intermediate polarity. The leaf EtOAc extract showed a more consistent activity profile with dilution when compared with the leaf MeOH extract. Therefore, the leaf and stem EtOAc extracts were evaluated in a phytotoxicity bioassay using the concentrations described above.

The standard target species were lettuce, tomato, cress, and onion (Figure 2), and the weed species were barnyardgrass and brachiaria (Figure 3). The parameter that was affected the most by the extracts was root length. The root sensitivity to allelochemicals can be explained by the fact that roots are the first parts of the plant to emerge, and they are in direct contact with extracts, which can be absorbed directly. As a consequence, the roots are exposed to peak periods and concentrations of phytotoxins.

The inhibition by the leaf extract at the highest concentrations was equal to that of the herbicide Logran at 0.8 and 0.4 mg mL\(^{-1}\) on STS (Figure 2) and barnyardgrass (Figure 3) roots, with values above 80% inhibition for the highest concentration in most species. Moreover, the leaf extract at 0.8 mg mL\(^{-1}\) was more active than the herbicide on the germination of tomato and cress (Figure 2). The inhibition of leaf extracts at the two highest concentrations on the shoot lengths of tomato, onion, and cress was similar to that obtained with the herbicide (Figure 2). On the other hand, the stem extract showed similar inhibition potencies to the herbicide on the shoot length of tomato, onion, and cress and on the root length of tomato and onion (Figure 2). The germination of weeds was not affected by the extracts or the herbicide, and a similar lack of activity was observed for the shoot and root lengths of brachiaria (Figure 3).

These results show that the extracts of *T. diversifolia* have phytotoxic activity on STS and weed species. The identification of the individual components and the evaluation of their bioactivity could provide a better understanding of the ability of invasive plants to become dominant and thus facilitate the discovery of new tools for crop protection.

The EtOAc leaf extract was selected to continue the study, as it was the most active extract in both bioassays. The remaining defatted material (1.8 kg) was extracted with EtOAc, and the chlorophyll was removed to give 24.3 g of material as four chlorophyll-free fractions: A (3.831 g), B (10.766 g), C (3.831 g), and D (1.397 g). The extracts were subjected to an etiolated wheat coleoptile bioassay. The bioactivity profiles of the isolated compounds were assayed on *STS* (Figure 3) and barnyardgrass (Figure 3) roots, with values above 80% inhibition for the highest concentration in most species. Moreover, the leaf extract at 0.8 mg mL\(^{-1}\) was more active than the herbicide on the germination of tomato and cress (Figure 2). The inhibition of leaf extracts at the two highest concentrations on the shoot lengths of tomato, onion, and cress was similar to that obtained with the herbicide (Figure 2). On the other hand, the stem extract showed similar inhibition potencies to the herbicide on the shoot length of tomato, onion, and cress and on the root length of tomato and onion (Figure 2). The germination of weeds was not affected by the extracts or the herbicide, and a similar lack of activity was observed for the shoot and root lengths of brachiaria (Figure 3).

These results show that the extracts of *T. diversifolia* have phytotoxic activity on STS and weed species. The identification of the individual components and the evaluation of their bioactivity could provide a better understanding of the ability of invasive plants to become dominant and thus facilitate the discovery of new tools for crop protection.

The EtOAc leaf extract was selected to continue the study, as it was the most active extract in both bioassays. The remaining defatted material (1.8 kg) was extracted with EtOAc, and the chlorophyll was removed to give 24.3 g of material as four chlorophyll-free fractions: A (3.831 g), B (10.766 g), C (3.831 g), and D (1.397 g). The extracts were subjected to an etiolated wheat coleoptile bioassay. The bioactivity profiles of the isolated compounds were assayed on STS (Figure 3) and barnyardgrass (Figure 3) roots, with values above 80% inhibition for the highest concentration in most species. Moreover, the leaf extract at 0.8 mg mL\(^{-1}\) was more active than the herbicide on the germination of tomato and cress (Figure 2). The inhibition of leaf extracts at the two highest concentrations on the shoot lengths of tomato, onion, and cress was similar to that obtained with the herbicide (Figure 2). On the other hand, the stem extract showed similar inhibition potencies to the herbicide on the shoot length of tomato, onion, and cress and on the root length of tomato and onion (Figure 2). The germination of weeds was not affected by the extracts or the herbicide, and a similar lack of activity was observed for the shoot and root lengths of brachiaria (Figure 3).

These results show that the extracts of *T. diversifolia* have phytotoxic activity on STS and weed species. The identification of the individual components and the evaluation of their bioactivity could provide a better understanding of the ability of invasive plants to become dominant and thus facilitate the discovery of new tools for crop protection.

The EtOAc leaf extract was selected to continue the study, as it was the most active extract in both bioassays. The remaining defatted material (1.8 kg) was extracted with EtOAc, and the chlorophyll was removed to give 24.3 g of material as four chlorophyll-free fractions: A (3.831 g), B (10.766 g), C (3.831 g), and D (1.397 g). The extracts were subjected to an etiolated wheat coleoptile bioassay. The bioactivity profiles of the isolated compounds were assayed on STS (Figure 3) and barnyardgrass (Figure 3) roots, with values above 80% inhibition for the highest concentration in most species. Moreover, the leaf extract at 0.8 mg mL\(^{-1}\) was more active than the herbicide on the germination of tomato and cress (Figure 2). The inhibition of leaf extracts at the two highest concentrations on the shoot lengths of tomato, onion, and cress was similar to that obtained with the herbicide (Figure 2). On the other hand, the stem extract showed similar inhibition potencies to the herbicide on the shoot length of tomato, onion, and cress and on the root length of tomato and onion (Figure 2). The germination of weeds was not affected by the extracts or the herbicide, and a similar lack of activity was observed for the shoot and root lengths of brachiaria (Figure 3).
g), and D (5.875 g). These fractions were chromatographed on silica gel using hexane/acetone mixtures of increasing polarity. This process afforded subfractions (A) A1, A2, and A4; (B) B1, B2, B3, and B4; and (C) C3, C4, C5, C6, and C8. These subfractions were purified, and the allelochemicals were identified.

The chromatographic separation of subfractions led to the isolation of 14 compounds: 12 sesquiterpene lactones (1–12), one secoesquiterpene (13), and one diterpene (14). The isolated compounds 1–3 and 6–14 were identified by comparison of their spectroscopic data (1H NMR, 13C NMR, IR, and MS) to those reported in the literature for tagitinin F-3-O-methyl ether (1),38 3-methoxytirotundin (2),39 tirotundin (3),40 1/β-methoxydiversifolin (6),39 tagitinin A (7),41 tagitinin C (8),41 3/α-acetoxy-8/β-isobutyryloxyreynosin (9),39 3/α-acetoxytithifolin (10),39 3α-acetoxycostunolide (11),42 8/β-...
isobutyryloxycumaranolide (12),\(^4^3\) 2-formyl-4-hydroxy-4α-methyl-3-(3-oxobutyl)cyclohexanecarboxylic acid (13),\(^4^4\) and (2E,6E10E)-3-(hydroxymethyl)-7,11,15-trimethylhexadeca-2,6,10,15-tetraene-1,14-diol (14).\(^4^5\) Compound 11 is reported for the first time from \textit{T. diversifolia}.

Compounds 4 and 5 were isolated from fraction C3.3 as an apparent single component after successive purifications using HPLC techniques. However, the \(^1\)H and \(^13\)C NMR spectra showed that this was a mixture of two sesquiterpene lactones in a 3:2 ratio. The (+)-HRESITOFMS showed two signals at \(m/z\) 367.2116 and 389.1938 according to the adducts \([M + H]^{+}\) and \([M + H + Na]^{+}\) and is consistent with the presence of a single compound, and the (−)-HRESITOFMS data showed other signals at \(m/z\) 365.1976 and 389.1914 corresponding to \([M − H]^{−}\) and \([M − H + Na]^{−}\). These peaks are consistent with a molecular formula of \(C_{20}H_{30}O_{6}\) for both isomeric compounds. The \(^1\)H and \(^13\)C NMR spectra contained signals similar to those of tirotundin (3)\(^4^0\) apart from the absence of the signals corresponding to the isobutyroyl ester side chain at C-8. The spectra contained signals from two different chains, and these were inferred as corresponding to two different compounds. It was not possible to identify which signal corresponded with which side chain from the \(^1\)H−\(^1\)H COSY spectrum, since the signals were very close together. However, the 1D TOCSY (total correlation spectroscopy) spectrum proved to be more informative and allowed the determination of the exact chemical shifts of the signals from each ester side chain. Signals corresponding to the methyl groups of both chains were identified in the TOCSY spectrum. These signals were selected since they were more shielded than the others.

The procedure known as “array-TOCSY” with different values of mix (mixing time) between 0.010 and 0.15 s provided different subspectra (Figure 4). The rise in the mixing time value allowed greater distance correlations in spin systems to be visualized whenever the magnitude of the coupling constant of the neighboring proton allows this effect. Each side-chain proton of the sesquiterpene lactones was assigned (Figure 4).
Starting with the methyl proton at δ 0.83 (H-4″), correlations for δ 1.38 (H-3′a), 1.58 (H-3′b), 1.02 (H-5′), and 2.22 (H-2′) in the 1D TOCSY spectrum were observed, and these results are consistent with a 2-methylbutyroyl ester (Figure S10, Supporting Information). In the same way, 1D TOCSY subspectra correlations were obtained by selective excitation of the methyl protons at δ 0.86 and 0.87 (H-4″, H-5″) from the other compound, and the connectivity established with signals at δ 1.95 (H-3″) and 2.06 (H-2″) corresponded to an isovaleryl chain (Table 1).

The zTOCSY technique is a two-dimensional total J-correlation spectroscopy for scalar coupled spin systems with a zero-quantum filter for artifact suppression. Thus, the zTOCSY experiment contains a zero-quantum filter and usually results in cleaner spectra than the TOCSY experiment. The zTOCSY spectrum allowed the structural sequences proposed above to be performed (Figure S10, Supporting Information). A full assignment of the 1H and 13C NMR spectroscopic data for these new sesquiterpene lactones is reported with 1H COSY, gDQCOSY, HSQC, HMBC, and NOESY data. As a result, the structure of 4 was established as 8f-O-(2-methylbutyroyl)tirotundin, and the structure of 5 as 8β-O-(isovaleryl)tirotundin. Neither of these two compounds has been reported previously in the literature.

The bioactivities of compounds 1–3, 6–12, and 14 were tested in a wheat coleoptile bioassay in the concentration range 10^{-5} to 10^{-7} M (except for compound 2, which had a concentration limit of 3×10^{-8} M). Compound 13 was not tested due to the low amount obtained, and compounds 4 and 5 were not evaluated because they were obtained as a mixture. All of the compounds tested showed high inhibitory activities against coleoptile elongation at the highest concentration used.

Table 1. 1H NMR (600 MHz) and 13C (125 MHz) Spectroscopy Data for Compounds 4 and 5 in CDCl₃

<table>
<thead>
<tr>
<th>position</th>
<th>δ type</th>
<th>δ (J in Hz)</th>
<th>HMBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38.74, CH₂</td>
<td>2.22, m; 1.97, m</td>
<td>C-2, C-3, C-9, C-10</td>
</tr>
<tr>
<td>2</td>
<td>38.17,a 38.15,a CH₃</td>
<td>1.85 m</td>
<td>C-1, C-3</td>
</tr>
<tr>
<td>3</td>
<td>108.77,a 108.76,a C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>43.23,a 43.22,a CH</td>
<td>1.98, d (7)</td>
<td>C-2, C-3, C-5, C-6</td>
</tr>
<tr>
<td>5</td>
<td>38.05,a 38.03,a CH₃</td>
<td>2.11, ddd (1.5, 7, 9.3); 1.84, ddd (1.5, 7, 9.3)</td>
<td>C-3, C-4, C-6, C-7, C-15</td>
</tr>
<tr>
<td>6</td>
<td>81.18,a 81.14,a CH</td>
<td>4.53, ddd (1.5, 6.5, 9.3)</td>
<td>C-4, C-7, C-8</td>
</tr>
<tr>
<td>7</td>
<td>47.72,a 47.59,a CH</td>
<td>4.06, dddd (2.9, 3.4, 4.1, 6.5)</td>
<td>C-6, C-7</td>
</tr>
<tr>
<td>8</td>
<td>69.80,a 69.55,a CH</td>
<td>5.54, ddd (4.1, 4.8, 11.1)</td>
<td>C-6, C-7</td>
</tr>
<tr>
<td>9</td>
<td>42.11,a 42.08,a CH₃</td>
<td>1.85, dd (4.8, 14.7); 1.74, dd (11.1, 14.7)</td>
<td>C-1, C-7, C-8, C-10, C14</td>
</tr>
<tr>
<td>10</td>
<td>80.19,a 80.18,a C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>136.93,a 137.00,a C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>169.39, C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>121.58,a 121.55,a CH₃</td>
<td>6.25, d (2.9); 5.52, d (3.4)</td>
<td>C-7, C-11, C-12</td>
</tr>
<tr>
<td>14</td>
<td>26.86,a 26.81,a CH₃</td>
<td>1.44, s</td>
<td>C-1, C-9, C-10</td>
</tr>
<tr>
<td>15</td>
<td>18.56,a 18.54,a CH₃</td>
<td>1.10, d (7)</td>
<td>C-3, C-4, C-5</td>
</tr>
</tbody>
</table>

2-methylbutyroyl

1′: 175.80, C
2′: 41.16, CH 2.22, dq (7) C-1′, C-3′, C-4′, C-5′
3′: 26.56, CH₂ 1.38, dq (7); 1.58, dq (7) C-1′, C-2′, C-4′, C-5′
4′: 11.60, CH₃ 0.83, t (7) C-2′, C-3′
5′: 16.86, CH₃ 1.02, d (7) C-2′, C-3′

isovaleryl

1″: 172.19, C
2″: 43.34, CH₂ 2.06, dd (15, 7) C-1″, C-3″, C-4″, C-5″
3″: 25.63, CH 1.95, m C-1″, C-2″, C-4″, C-5″
4″: 22.22, CH₂ 0.86, d (7) C-2″, C-3″, C-5″
5″: 22.34, CH₃ 0.87, d (7) C-2″, C-3″, C-4″

13C assignments of compounds 4 and 5 may be interchanged.
Compounds 1 (94%), 3 (94%), 6 (98%), 7 (91%), 8 (96%), and 12 (93%) showed similar or higher activity in comparison to the commercial herbicide Logran at 10^{-3} M (Figure 5).

![Figure 5. Effects of compounds tagitinin F-3-O-methyl ether (1), 3-methoxytirotundin (2), tirotundin (3), 1β-methoxydiversifolin (6), tagitin A (7), tagitin C (8), 3β-acetoxy-8β-isobuturyloxyrenosin (9), 3β-acetoxythifolin (10), 3α-acetoxycostunolide (11), 8β-isobuturyloxycomrambolide (12), and (2E,6E,10E)-3-(hydroxymethyl)-7,11,15-trimethylhexadeca-2,6,10,15-tetraene-1,14-diol (14) from Tithonia diversifolia on the elongation of etiolated wheat coleoptiles.](image)

Table 2. IC$_{50}$ Values Calculated from Compounds 1–3, 6–12, and 14 in the Wheat Coleoptile Bioassay, Using a Sigmoidal Dose–Response Variable Slope Models

<table>
<thead>
<tr>
<th>compound</th>
<th>IC$_{50}$ (μg mL$^{-1}$)</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>98.15</td>
<td>0.9953</td>
</tr>
<tr>
<td>2</td>
<td>125.3</td>
<td>0.9993</td>
</tr>
<tr>
<td>3</td>
<td>288.1</td>
<td>0.9993</td>
</tr>
<tr>
<td>6</td>
<td>177.5</td>
<td>0.9814</td>
</tr>
<tr>
<td>7</td>
<td>203.6</td>
<td>0.9395</td>
</tr>
<tr>
<td>8</td>
<td>113.0</td>
<td>0.9951</td>
</tr>
<tr>
<td>9</td>
<td>357.0</td>
<td>0.9530</td>
</tr>
<tr>
<td>10</td>
<td>283.7</td>
<td>0.9967</td>
</tr>
<tr>
<td>11</td>
<td>287.4</td>
<td>0.9971</td>
</tr>
<tr>
<td>12</td>
<td>265.0</td>
<td>0.9947</td>
</tr>
<tr>
<td>14</td>
<td>528.3</td>
<td>0.9877</td>
</tr>
<tr>
<td>Logran</td>
<td>38.69</td>
<td>0.9895</td>
</tr>
</tbody>
</table>

Experiments showed that the extracts and compounds had significant activity against STS seeds (Figure 6) and weeds (Figure 7) when compared to the standard herbicide. The extracts and compounds had IC$_{50}$ values lower than those of the standard herbicide, with 95% effectiveness or greater for compounds 1 and 2, and 85% for compound 8. The extracts and compounds also showed selectivity in their activity, with compounds 1 and 3 being the most selective.

The results obtained in this study show that the extracts and pure compounds have similar activity profiles in coleoptile and seedling growth bioassays. The amounts in which natural compounds are biosynthesized and their biological activities, including phytotoxicity, suggest that they may be involved in the defense mechanism of this plant, and this also supports our hypothesis that T. diversifolia has phytotoxic effects and could inhibit the development of other plants. These compounds would be the allelochemicals responsible for the activity shown by this plant. The great potential of T. diversifolia could be exploited in the biological control of weeds and as natural herbicide models for crop protection.
given in ppm with respect to residual 1H signals of CHCl$_3$-d_1 (δ 7.25), and 13C signals are referenced to the solvent signal (δ 77.00). HRMS were obtained on a Synapt G2 UPLC-QTOF ESI mass spectrometer (Waters, Milford, MA, USA). HPLC was carried out on a HPLC chromatograph (Merck-Hitachi, Tokyo, Japan), with RI detection. Silica gel 0.060−0.200, 60A from Acros Organics (Geel, Belgium), and Lichroprep RP 18 (40−63 μm) from Merck (Darmstadt, Germany) were used for column chromatography. TLC was carried out on silica gel 60 F254 aluminum sheets and TLC silica gel 60 RP-18 F254S aluminum sheets from Merck. Compounds were visualized under UV$_{254}$/366 light and by spraying with H$_2$SO$_4$/H$_2$O/HOAc (4:16:80). HPLC columns used were a semi-preparative column 250 mm × 10 mm i.d., a 10 μm Lichrospher 250-10 Si60 (Merck) with a LiChrospher Si60 guard column (Merck), and an analytical column.

Figure 6. Effects of compounds 1-β-methoxydiversifolin (6), tagitin A (7), and tagitin C (8) from Tithonia diversifolia on standard target species growth. Values are expressed as percentage difference from control. Levels of significance at 0.01 < p < 0.05 (b) or p < 0.01 (a) according to Welch’s test.
250 mm × 4.60 mm × 10 μm Luna 10 μm Silica (2) 100 Å (Phenomenex). Ultrasound-assisted extractions were performed in an ultrasonic bath (360 W, J.P. Selecta, Barcelona, Spain).

Chemicals. Chloroform, n-hexane, methanol, dichloromethane, ethyl acetate, and acetone Hipersolv Chromanorm for HPLC were obtained from VWR International (Radnor, PA, USA). MagniSolv chloroform-D1 deuterium degree min. 99.8% for NMR spectroscopy was obtained from Merck.

Plant Material. Leaves, stems, and roots were randomly gathered from plants in the area of Cerrado (Brazilian savanna) from Universidade Federal de São Carlos (UFSCar) São Carlos campus, São Carlos, SP, Brazil (21°58′ to 22°00′ S and 47°51′ to 47°52′ W), during the dry season (August 2013). Plant species were identified by one of the authors (S.C.J.G.). The *T. diversifolia* exsiccat was deposited in the Herbarium of the Department of Botany of UFSCar, Brazil (voucher 8728).

Extraction and Isolation. The plant material was dried in an oven (for 72 h at 40 °C) and powdered using an industrial mill. The dried material from each part of the plant (60 g) was extracted with hexane (for 72 h at 40 °C) and powdered using an industrial mill. The dried material was extracted with ethyl acetate (EtOAc) and methanol (MeOH). These extractions yielded, after removal of the solvent, the following quantities were obtained: roots 92.8 mg (hexane), leaves 401.5 mg (hexane), and stems 52.7 mg (hexane). The defatted material was extracted with ethyl acetate (EtOAc) and methanol (MeOH). These extractions yielded, after removal of the solvent, the following quantities were obtained: roots 92.8 mg (EtOAc) and 628.6 mg (MeOH); leaves 625 mg (EtOAc) and 1966 mg (MeOH); stems 84 mg (EtOAc) and 1291 mg (MeOH).

Chlorophyll was removed from leaf extracts using mixtures of H2O/MeOH, 20% (fraction A), 40% (EtOAc) and 1291 mg (MeOH). Chlorophyll was removed from this extract, and four chlorophyll-free fractions were obtained in decreasing order of polarity, A (3.8306 g), B (10.7661 g), C (3.8310 g), and D (5.8751 g), which were chromatographed with a hexane/EtOAc gradient from 0 to 100% in EtOAc, with a 10% increase each time, and finishing with 100% MeOH (500 mL of each polarity), to afford various subfractions: (A) A1, A2, and A4; (B) B1, B2, B3, and B4; (C) C3, C4, C5, C6, and C8. Subfraction B1 (22.1 mg) was purified by HPLC (semipreparative column) eluting with hexane/EtOAc (80:20 v/v, flow 3 mL/min) to obtain compounds 1 (5 mg) and 2 (2.2 mg). Subfractions B2 (3.56 g), B3 (2.32 g), and B4 (3.32 g) yielded compounds 6 (3.56 g), 8 (2.32 g), and 7 (3.32 g), respectively. Subfraction C3 (505.5 mg) was subjected to column chromatography with a hexane/acetone gradient from 20% to 100% in acetone, with a 10% increase each time and finishing with 100% MeOH (250 mL of each polarity) to afford nine subfractions (C3.1 to C3.9). Subfraction C3.2 (98 mg) was purified by HPLC (semipreparative column) eluting with hexane/EtOAc (70:30 v/v, flow 3 mL/min) to afford compounds 11 (3.5 g), 12 (10 mg), and 13 (1.3 mg). Subfraction C3.3 (300 mg) was purified by HPLC (semipreparative column) eluting with hexane/EtOAc (50:50, flow 3 mL/min) to yield compounds 3 (11.3 mg), 10 (7.8 mg), and an isomeric mixture of 4 + 5 (21.3 mg). This mixture 4 + 5 was obtained after successive purifications using analytical columns eluting with hexane/EtOAc (40:60, flow 1 mL/min) and hexane/acetone (50:50, flow 1 mL/min) as a single peak. Subfraction C4 (768 mg) afforded compound 8 (768 mg). Subfraction C5 (295.5 mg) was purified by HPLC (semipreparative column) eluting with hexane/EtOAc (60:40, flow 3 mL/min) to yield compounds 8 (68.4 mg) and 9 (14.2 mg). Subfraction C6 (756 mg) yielded compound 7 (756 mg). Subfraction C8 (120.7 mg) yielded compound 14 (120.7 mg). Subfractions A1 (1.26 g), A2 (467 mg), and A4 (854 mg) yielded compounds 6 (1.26 g), 8 (467 mg), and 7 (854 mg), respectively.

Figure 7. Effects of compounds 1f-methoxydiversifolin (6), tagitinin A (7), and tagitinin C (8) from *Tithonia diversifolia* on weed growth. Values are expressed as percentage difference from control. Levels of significance at 0.01 < p < 0.05 (b) or p < 0.01 (a) according to Welch’s test.
controlled pH by using 10
\(\text{M} \) NaOH (pH 6.0). The extracts or compounds to be assayed
were removed from the shoots. The latter were placed in a Van der
Weij guillotine, and the apical 2 mm were cut off and discarded. The
next 4 mm of the coleoptiles were removed and used for bioassays. All
manipulations were performed under a green safelight.57 Crude
extracts or pure compounds were dissolved in DMSO (0.1%) and
diluted in phosphate-citrate buffer containing 2% sucrose55 at pH 5.6
to the final bioassay concentrations (0.8, 0.4, and 0.2 mg mL\(^{-1}\)
for extracts and 10\(^{-3}\), 3 \times 10\(^{-4}\), 10\(^{-5}\) M for compounds).
Parallel controls were also run. The commercial herbicide Logran,
for which the original formulation is a combination of \(\text{N}^2\text{-tert-butyl-N}^4\text{-}
ethyl-6-methylthio-1,3,5-triazine-2,4-diamine \) (terbutryn, 59.4%) and
1-\(\text{[2-(2-chloroethoxy)phenylsulfonyl]}\)-3-(4-methoxy-1,3,5-
triazin-2-yl)urea (triasulfuron, 0.6%), was used as an internal reference,
at the same concentrations and under the same conditions as reported
previously.34 Buffered aqueous solutions with DMSO and without any
test compound were used as a control for all the plant samples assayed.
Five coleoptiles and 2 mL of solution were placed in each test tube
(three tubes per dilution), and the tubes were rotated at 6 rpm in a
roller tube apparatus for 24 h at 25 °C in the dark. The coleoptiles
were measured by digitalization of their images. Data were statistically
analyzed using Welch’s test34 and are presented as percentage
difference from the control. Positive values represent stimulation,
and negative values represent inhibition.

Phytotoxicity Bioassays

Coleoptile Bioassay. Wheat (Triticum aestivum L. cv. Duro) seeds were sown in 15 cm diameter Petri dishes moistened with water
and grown in the dark at 25 ± 1 °C for 3 days.58 The roots and caryopses
were removed from the shoots. The latter were placed in a Van der
Weij guillotine, and the apical 2 mm were cut off and discarded. The
next 4 mm of the coleoptiles were removed and used for bioassays. All
manipulations were performed under a green safelight.57 Crude
extracts or pure compounds were dissolved in DMSO (0.1%) and
diluted in phosphate-citrate buffer containing 2% sucrose55 at pH 5.6
to the final bioassay concentrations (0.8, 0.4, and 0.2 mg mL\(^{-1}\)
for extracts and 10\(^{-3}\), 3 \times 10\(^{-4}\), 10\(^{-5}\) M for compounds).
Parallel controls were also run. The commercial herbicide Logran,
for which the original formulation is a combination of \(\text{N}^2\text{-tert-butyl-N}^4\text{-}
ethyl-6-methylthio-1,3,5-triazine-2,4-diamine \) (terbutryn, 59.4%) and
1-\(\text{[2-(2-chloroethoxy)phenylsulfonyl]}\)-3-(4-methoxy-1,3,5-
triazin-2-yl)urea (triasulfuron, 0.6%), was used as an internal reference,
at the same concentrations and under the same conditions as reported
previously.34 Buffered aqueous solutions with DMSO and without any
test compound were used as a control for all the plant samples assayed.
Five coleoptiles and 2 mL of solution were placed in each test tube
(three tubes per dilution), and the tubes were rotated at 6 rpm in a
roller tube apparatus for 24 h at 25 °C in the dark. The coleoptiles
were measured by digitalization of their images. Data were statistically
analyzed using Welch’s test34 and are presented as percentage
difference from the control. Positive values represent stimulation,
and negative values represent inhibition.

Phytotoxicity Bioassays. The selection of target plants was based on a study for a standard phytotoxicity bioassay reported previously.34 Several standard target species were proposed, including the dicotyledons tomato (Lycopersicon esculentum Mill.), cress (Lepidium sativum L.), and lettuce (Lactuca sativa L.) and the monocotyledon onion (Allium cepa L.), which were assayed for this study. Two weed species were added as target plants in this bioassay, the monocotyledons barnyardgrass (Echinochloa crus-galli L.) and brachiaria (Urochloa decumbens Stapf) R. B. Porter.56

Four replicates were used for tomato, cress, onion, and lettuce, each
containing 20 seeds. Treatment, control, or internal reference solution
(1 mL) was added to each Petri dish. After adding seeds and aqueous
solutions, Petri dishes were sealed with Parafilm to ensure closed-
system models. Seeds were further incubated at 25 °C in a Memmert
ICE 700 controlled environment growth chamber. The photoperiod
was 24 h of dark for onion, tomato, cress, and lettuce and 16/8 h light/
dark for barnyardgrass and brachiaria. Bioassays took 4 days for cress, 5 days for tomato, 6 days for lettuce, 7 days for onion, and 8 days for barnyardgrass and brachiaria. After growth, plants were frozen at −10 °C for 24 h to avoid subsequent growth during the measurement process.

The germination rate, root length, and shoot length were recorded using a Fitomed system.56 Data were analyzed statistically using Welch’s test, with significance fixed at 0.01 and 0.05. Results are presented as percentage differences from the control. Zero represents control, positive values represent stimulation, and negative values represent inhibition.

ASSOCIATED CONTENT
