Triterpenoid saponins from the aerial parts of *Trifolium argutum* Sol. and their phytotoxic evaluation

Andy J. Pérez\(^a,^*\), Ana M. Simonet\(^b\), Łukasz Pecio\(^a\), Mariusz Kowalczyk\(^a\), Juan M. Calle\(^b\), Francisco A. Macías\(^b\), Wiesław Oleszek\(^a\), Anna Stochmal\(^a\)

\(^a\) Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100 Pulawy, Poland

\(^b\) Grupo de Alelopatía, Departamento de Química Orgánica, Instituto de Biomoléculas (INBIO), Facultad de Ciencias, Universidad de Córdoba, C/República Saharaí s/n, Apdo. 40, 11510-Puerto Real (Córdoba), Spain

A R T I C L E I N F O

Article history:
Received 27 March 2015
Received in revised form 13 May 2015
Accepted 20 May 2015
Available online 16 June 2015

Keywords:
Trifolium argutum Sol.
Triterpenoid saponins
Structural elucidation
Phytotoxic activity
Structure–activity relationship

A B S T R A C T

Four triterpenoid saponins (1–4) were isolated from the aerial parts of *Trifolium argutum* Sol. (sharptooth clover) and their structures were elucidated by comprehensive spectroscopic analysis, including 1D and 2D NMR techniques, mass spectrometry and chemical methods. Two of them are new compounds, characterized as 3-O-[α-L-rhamnopyranosyl-(1→2)-β-D-galactopyranosyl-(1→2)-β-D-glucuronopyranosyl]-3β,24-dihydroxoyolean-12-ene-22-29-oic acid (1) and 3-O-[β-D-galactopyranosyl-(1→2)-β-D-glucuronopyranosyl]-3β,24-dihydroxoyolean-12-ene-22-29-oic acid (2). The occurrence of 3β,24-dihydroxoyolean-12-ene-22-29-oic acid (mililotigenin) in its natural form is reported for the first time as a triterpenoid aglycone within *Trifolium* species. The phytotoxicity of compounds was evaluated on four STS at concentration 1 μM to 333 μM. Compound 1 was the most active, showing more than 60% inhibition on the root growth of *L. sativa* at the higher dose, with IC\(_{50}\) (254.1 μM) lower than that of Logran\(^a\) (492.6 μM), a commercial herbicide used as positive control. The structure–activity relationships indicated that both aglycones and glycosidic parts may influence the phytotoxicity of saponins.

©2015 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.

1. Introduction

Clover genus (*Trifolium* L.) is one of the largest genera in the family of Leguminosae (Fabaceae) with approximately 250 species. They are widely grown as livestock forage and green manure crops and at least 16 species are actively cultivated (Ellison et al., 2006). One of them is sharp-tooth clover, *Trifolium argutum* Sol. an annual herb plant distributed in Europe, Middle East, Australia and Egypt (Bisby et al., 1994), from which scarce phytochemical information is available in the literature. The occurrence of triterpenoid saponins among *Trifolium* species have extensively been documented (Jurzysta et al., 1989; Sakamoto et al., 1992; Mohamed et al., 1995; Simonet et al., 1999; Oleszek and Stochmal, 2002; Pawelec et al., 2013; Pérez et al., 2013b). Saponins in these plants are a mixture of triterpenoid pentacyclic glycosides which are often derivatives of soyasapogenol A, B, C and E, having hydroxymethyl group at C-24 and double bond between C-12 and C-13 as a common feature. The sugar portion consists of one or three units, where β-D-glucuronic acid is linked at C-3 position of the aglycone moiety. Despite the wide range of pharmacological properties attributed to triterpenoid saponins, they have also been described for their detrimental effects over the plant growth when releasing into the soil (Marchaim et al., 1974; Oleszek et al., 1992; Oleszek, 1993). Triterpenoid saponins have recently been investigated for their phytotoxic activity (Hernández et al., 2011; Scognamiglio et al., 2012). This paper reports the isolation and structure elucidation of two new triterpenoid saponins (1, 2), along with two known analogs (3, 4) from *T. argutum* Sol. aerial parts, and their phytotoxic evaluation against the germination and development of four standard target species (STS).

2. Results and discussion

2.1. Characterization of the compounds

Dried aerial parts of *T. argutum* were extracted exhaustively with 70% EtOH. The hydroalcoholic extract was partitioned in n-BuOH/H\(_2\)O and the organic phase was subjected to chromatographic fractionation using reverse-phase RP-18 on a gradient
of Me$_2$CO/H$_2$O and other multiple separation procedures to give two new triterpenoid saponins (1 and 2) and two known analogs: 3-O-β-d-glucuronylpyranosyl melilotigenin (caraginin B) (3) (Zheng et al., 2013), 3-O-[α-L-rhamnopyranosyl-(1→2)]-β-d-galactopyranosyl-(1→2)-β-d-glucuronopyranosyl] soyasapogenol B (soyasaponin-I) (4) (Kitagawa et al., 1988) (Fig. 1). The structures of the compounds were elucidated on the basis of spectroscopic data obtained from 1H, 13C, 2D (HSQC, HMBC, DQF-COSY, TOCSY, ROESY, HSQC-TOCSY), 1D-ROESY (250 ms) and 1D-TOCSY (30, 60, 120 ms) NMR experiments, HRESI-TOFMS, ESI-MS/MS and acid hydrolysis.

Compound 1 was obtained as a white amorphous powder and its molecular formula was assigned as C$_{46}$H$_{72}$O$_{20}$ based on data from HRESI-TOFMS (m/z 969.4696 [M – H]$,^\circ$, calcd. for C$_{46}$H$_{72}$O$_{20}$, 969.4695). In the negative ESI-MS/MS spectrum, the deprotonated molecule [M – H]$^-$ at m/z 969 suffered the successive neutral losses of H$_2$O (18 Da) and CO$_2$ (44 Da) to produce the m/z 951 and 907 ions, respectively, indicating the presence of a carboxylic group. Further fragment ions at m/z 761 and 599 indicated the neutral losses of a deoxohexose unit (146 Da) and a hexose unit (162 Da), respectively. The successive neutral loss of 114 Da to generate the ion at m/z 485, suggested the presence of a hexuronic acid unit. It is originated from the ion at m/z 599, corresponding to a molecular rearrangement derived from hexuronic acid after losses of water and carbon dioxide (Gülcemal et al., 2013). The 1H NMR spectrum of 1 showed for the aglycone moiety signals of six tertiary methyl groups at δ 0.90, 0.98, 0.99, 1.13, 1.26 and 1.26 (Table 1) and these were correlated in the HSQC spectrum with carbons at δ 16.3, 17.3, 21.0, 21.6, 23.4 and 25.8 respectively. One olefinic proton at δ 5.38 (H-12, t, J = 3.4 Hz), together with two olefinic carbons at δ 125.8 (C-12) and δ 142.2 (C-13) suggested the presence of a Δ12-oleanene skeleton. An oxygen-bearing methine proton signal at δ 3.42 (dd, J = 11.6, 4.5 Hz) and its long-range correlations observed in the HMBC spectrum with the carbon resonances at δ 23.4 (C-23), 44.7 (C-4) and 64.3 (C-24) suggested the occurrence of an equatorial secondary alcoholic group at C-3. The typical 24-hydroxyxymethyl group found among Trifolium saponins (Pérez et al., 2013b) was deduced from the 1H NMR signals at δ 3.21 (d, J = 11.5 Hz) and δ 4.14 (d, J = 11.5 Hz) which correlated in the HSQC spectrum with the carbon resonance signal at δ 64.3, as well as from their ROESY correlations with proton signals at δ 0.90 (H-25, methyl group) and δ 1.83 (H-2α). The less shielded signals in the 13C NMR spectrum were found at δ 180.4 and 218.5, which were assigned as being due to a carboxylic group at C-29 and a keto group at C-22, respectively (Table 1). Therefore, the structure of the aglycone moiety of 1 was recognized to be 3β,24-dihydroxyolean-12-ene-22-o xo-29- oic acid, which is known as melilotigenin and its NMR assignments were in good agreement with those previously reported (Kang and Woo, 1988; Takeshita et al., 1991; Zheng et al., 2013). Melilotigenin has previously been identified as its methyl ester artifact in Trifolium repens (Sakamoto et al., 1992), however to the best of our

![Fig. 1. Structures of saponins (1–4) isolated from T. argutum aerial parts.](image)
knowledge it is reported here in its natural form for the first time within the genus *Trifolium*.

For the sugar portion, compound 1 showed signals corresponding to three anomeric protons at δ 4.46, 4.87 and 5.14, and these showed correlations in the HSQC spectrum with carbons at δ 105.5, 102.1 and 102.2, respectively (Table 2). Individual sugar units were identified by a combination of DQF-COSY, 1D-TOCSY and 1D-ROESY experiments. The latter two spectra were acquired from the selective excitation of each anomeric proton. In this way, the signal at δ 4.46 revealed a typical spin system of a β-d-glucuronic acid unit. Likewise, a spin system for a β-d-galactopyranosyl unit was detected for the anomeric signal at δ 4.87, which was confirmed by correlations with H-2Gal (δ 3.50, brt, J = 6.0 Hz) and H-3Gal (δ 3.55, dd, J = 9.7, 4.1 Hz) in 1D-ROESY experiment. The 1D-TOCSY (120 ms) experiment on the anomeric signal at δ 5.14 showed that magnetization was not properly transferred beyond H-2Rha (δ 3.93, dd, J = 1.7, 3.7 Hz). This finding, together with the presence of a methyl doublet at δ 1.28 (J = 6.9 Hz), is characteristic of a rhamnopyranosyl unit. A further selective TOCSY experiment on this methyl doublet (H-6Rha) allowed a sequential assignment of the signals from H-6Rha to H-2Rha, and the presence of a rhamnopyranosyl unit was confirmed. The correlations observed in the 1D-ROESY spectrum between H-1Rha and H-2Rha, and the absence of correlation with H-3Rha and H-5Rha, suggested the α-anomer. Finally, the 13C signal assignments for each sugar unit were made through an exhaustive analysis of the correlation in HSQC and HMQC-TOCSY spectra. The sequence in sugar chain and the connection with the aglycone were established by the interglycosidic HMBC/ROESY correlations, which were observed between H-1Rha (δ 5.14) and C-2Gal (δ 78.0)/H-2Gal (δ 3.65), H-1Gal (δ 4.87) and C-2Gal (δ 77.3)/H-2Gal (δ 3.76), H-1GlcA (δ 4.46) and C-3 (δ 92.4)/H-3 (δ 3.42) of the aglycone moiety. A β configuration for glucuronic acid and galactose units, and 1 for the rhamnose unit were established after acid hydrolysis of 1, followed by derivatization of sugars and UPLC-UV-SRM/MS analysis (Tanaka et al., 2007; Pérez et al., 2014). Based on the evidence outlined above, the structure of 1 was elucidated as 3-O-[α-L-rhamnopyranosyl-(1→2)-β-d-galactopyranosyl-(1→2)-β-d-glucuronopyranosyl] meliloticin, which has not been reported previously, representing a new natural compound.

The molecular formula of compound 2 was established as C24H36O16 by HRESI-TOFMS (m/z 823.4122 [M – H]-, calcd. for C24H36O16 823.4116). Its ESI-MS showed a deprotonated molecule [M – H]- at m/z 823 and the MS/MS fragmentation of this ion showed product ions formed by the neutral losses of one hexose and a hexuronic acid units, this latter following the same fragmentation pattern as shown by compound 1. The 1H and 13C NMR assignments for the aglycone moieties of 2 and 1 were superimposable (Table 1), suggesting that meliloticin is also the aglycone of 2. 1H NMR spectrum of 2 showed signals for only two anomeric protons at δ 4.53 and 4.71 (Table 2) and these were correlated in the HSQC spectrum with carbons at δ 105.1 and 104.7, which were identified as β-d-glucuronic acid and β-d-galactopyranosyl units, respectively. A study of the HMBC and ROESY correlations allowed to establish the sequence in the sugar chain of compound 2 as being the same as in 1, but without the terminal rhamnopyranosyl unit. Consequently, the structure of compound 2 was elucidated as 3-O-[β-d-galactopyranosyl-(1→2)-β-d-glucuronopyranosyl] meliloticin, which has not been reported previously, representing a new natural compound.

Table 2

<table>
<thead>
<tr>
<th>1′</th>
<th>2′</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_6</td>
<td>δ_6 (J in Hz)</td>
</tr>
<tr>
<td>β-α-GlcA</td>
<td>β-α-GlcA</td>
</tr>
<tr>
<td>1</td>
<td>105.5</td>
</tr>
<tr>
<td>2</td>
<td>77.3</td>
</tr>
<tr>
<td>3</td>
<td>78.1</td>
</tr>
<tr>
<td>4</td>
<td>74.0</td>
</tr>
<tr>
<td>5</td>
<td>77.0</td>
</tr>
<tr>
<td>6</td>
<td>175.9</td>
</tr>
</tbody>
</table>

Note: The assignments were confirmed by DQF-COSY, 1D-TOCSY, 1D-ROESY, HSQC, HMQC-TOCSY and HMBC experiments.

* a, b, c, d Acquired in methanol-D_4 / D_2O (95:5).

2.2. Phytotoxic activity

Phytotoxicity of the isolated compounds were tested at concentrations of 333, 100, 33, 10, 3.3 and 1.0 μM, using *L. sativa* (lettuce), *L. esculentum* (tomato), *L. sativum* (cress) and *A. cepa* (onion) as STS (Macias et al., 2000). The germination and shoot developed of STS were in general not affected, while inhibitory effects on the root growth were observed (Fig. 2). However, such inhibition over *L. sativum* and *A. cepa* were much lower than those of Logran® (positive control), where a dose-dependent response were not observed and consequently IC_{50} values could not be determined. Similar results were observed on the other two STS (*L. sativa* and *L. esculentum*), except for compound 1 (Fig. 2). It showed the most significant activity with IC_{50} = 254.1 μM on lettuce, lower than that of Logran® (452.6 μM). The roots of tomato, however, were less affected by compound 1 (IC_{50} = 268.0 μM) than by Logran® (IC_{50} = 42.1 μM). This may be due to different sensitivities of both STS. Taking into account this and the common features between the chemical structures of 1 and the rest of tested compounds, the structure-activity relationship is discussed. Soyasaponin-I (4) has the same sugar chain as compound 1, but their aglycones are slightly different. However, compound 4 showed weaker inhibitory profile (Fig. 2), which highlights that the lack of a carboxylic group at C-29 or the hydrogenation of the carbonyl group at C-22 of the aglycone moiety cause a detrimental effect over the phytotoxicity of 4. It seems that these functional groups in the aglycone moiety are not sufficient to cause phytotoxicity in saponins, but the sugar part appears to be much more important as well. Compounds 2 and 3 possess the same aglycone moiety as 1, but their glycosidic portions consist of two sugar units and one sugar unit, respectively. The weaker inhibition profiles of compounds 2 and 3 compared to 1 (Fig. 2), clearly indicate that longer glycosidic chain linked at C-3 position enhance the activity. These results indicate that phytotoxicity of triterpenoid saponins may be substantially heightened by small changes in their structures (aglycone or glycosidic chain), which could make them potential allelopathic agents.
3. Material and methods

3.1. General experimental procedures

Optical rotations were measured on a PerkinElmer 241 polarimeter (589 nm, 20 °C). 1D and 2D NMR spectra were recorded on a Bruker Avance III HD Ascend™-500 spectrometer equipped with 5 mm 1H, 31P broadband inverse (BBI) z-gradient probe. 1H (500.18 MHz) and 13C (125.77 MHz) NMR spectra were recorded in methanol-d_4 at 25 °C and chemical shifts are given on the δ scale referenced to residual methanol, δ_H 3.31 and δ_C 49.0. Adiabatic pulse sequences using gradients were applied and all 2D spectra, except for HMBC, were recorded in the phase-sensitive mode. Exact masses of the new saponins were measured on a UPLC-QTOF ESI (Waters Synapt G2, Manchester, UK) high resolution mass spectrometer (HRESI-TOFMS). Mass spectra were recorded in negative ion mode in the range m/z 100–2000, with a mass resolution of 20000 and an acceleration voltage of 0.7 kV. The fragmentation patterns of the saponins were obtained using a Thermo LCQ Advantage Max (Thermo, Waltham, MA) ion-trap mass spectrometer operated in the negative electrospray mode with the following parameters: spray voltage 3.9 kV, capillary voltage –47 V, tube lens offset –60 V and capillary temperature 240 °C. Semi-preparative HPLC was performed on a chromatographic system equipped with a Gilson 321 pump, a Gilson GX-271 liquid handler with a 2 mL sample loop, a Gilson Prep ELS™ II detector and a semi-preparative reversed Waters Atlantis Prep T3, 5 μm, (250 × 10 mm, i.d) column.

3.2. Plant material

Seeds of authenticated material of *T. argutum* Sol. were provided by the Genebank department of Leibniz Institute of Plant Genetics and Crop Plant Research (IPK, Gatersleben, Germany). Seeds were planted (1 m × 1 m plots) in an experimental field of the Institute of Soil Science and Plant Cultivation in Pulawy, Poland. The plants were harvested at the beginning of flowering, lyophilized, finely powdered, and used for the subsequent extraction.

3.3. Extraction and isolation

The dried and finely powdered *T. argutum* aerial parts (leaves, stems and flowers, 50 g) were defatted with CHCl$_3$ in a Soxhlet apparatus. Defatted material was then extracted three times with EtOH/H$_2$O (7:3, v/v) for 48 h by maceration at room temperature. The solvent was removed under reduced pressure and the residue (7.6 g) was suspended in distilled water and extracted with water-saturated n-BuOH. After removing the solvent, 2.8 g of butanolic extract were applied onto a 10 cm × 6 cm, 40–63 μm LiChroprep RP-18 glass column (Merck, Darmstadt, Germany), previously conditioned with water. The column was washed first with water and then gradually eluted with increasing concentration of Me$_2$CO in H$_2$O (20, 40, 60 and 80%, each 250 mL) to give four fractions. Saponins were eluted in Fr-2 (408.8 mg) and Fr-3 (268.8 mg). Fr-2 was applied onto a 40 cm × 3.2 cm glass column (Millipore Corp., Bedford, MA) packed with Sephadex LH-20 (Sigma–Aldrich,
Steinheim, Germany) and performed with isocratic MeOH/H₂O (8:2, v/v) at a flow rate of 2 mL/min. Ten milliliter fractions were collected and checked by TLC on Si 60 F₂₅₄ silicagel (Merck, Darmstadt, Germany), developed with EtOAc/HOAc/H₂O (7:2:2). Plates were sprayed with Lieberman–Burchard reagent and heated at 130 °C. Fractions with similar profiles were combined to give two further fractions, of which Fr-2-1 contained two major saponins. This fraction was subjected to semi-preparative HPLC using a linear gradient from 25% to 50% of solvent B (MeCN containing 0.2% H₂O) in solvent A (H₂O containing 0.2% HCOOH) mobile phase with a flow of 3 mL/min and 35 °C, yielding compounds 1 (7.8 mg) and 2 (5.1 mg) (Fig. 1). Fractionation of Fr-3 on Sephadex LH-20 and semi-preparative HPLC under the same conditions as described above, gave compounds 3 (3.7 mg) (Zheng et al., 2013) and 4 (10.2 mg) (Kitagawa et al., 1988) (Fig. 1).

3.4. 3-O-α-L-rhamnopyranosyl-(1→2)-β-D-galactopyranosyl-(1→2)-β-D-glucuronopyranosyl]-melilotigenin (1)

[α]D²⁰ = 22.4 (MeOH, c 0.1). HRESI-TOFMS, m/z 969.4696 [M – H]- (calcd. for C₄₈H₇₃O₂₀, 969.4695). ESI-MS (negative ion mode), m/z (relative intensity) 969 (100%)[M – H]-, which was fragmented in the MS/MS to give m/z 551 (14%) [M – H – 18], 907 (100%) [M – H – 44] – 423 (2%) [M – H – 146], 761 (78%) [M – H – 44 – 146], 643 (32%) [M – H – 146 – 180], 599 (5%) [M – H – 18 – 44 – 146 – 162], 485 (3%) [M – H – 18 – 44 – 146 – 162], 467 (6%) [M – H – 146 – 180 – 176]. For 13C NMR data see Tables 1 and 2.

3.5. 3-O(β-D-galactopyranosyl-(1→2)-β-D-glucuronopyranosyl]-melilotigenin (2)

[α]D²⁰ = 17.3 (MeOH, c 0.1). HRESI-TOFMS, m/z 823.4122 [M – H]- (calcd. for C₄₄H₆₃O₁₆, 823.4116). ESI-MS (negative ion mode), m/z (relative intensity) 823 (100%) [M – H]-, which was fragmented in the MS/MS to give m/z 779 (20%) [M – H – 44], 761 (58%) [M – H – 44 – 18], 643 (100%) [M – H – 180], 599 (16%) [M – H – 18 – 44 – 162], 485 (18%) [M – H – 18 – 44 – 162 – 114], 467 (6%) [M – H – 146 – 180 – 176]. For 1H and 13C NMR data see Tables 1 and 2.

3.6. Acid hydrolysis

Compounds 1 and 2 (1 mg each) were treated with 2.2 M HCl in 1,4-dioxane/water (1:1, v/v, 2 mL) at 80 °C for 3 h. After cooling, the solvent was removed with a stream of N₂. The dry residue was suspended in water and aglycons were extracted with ethyl acetate (3 × 2 mL). The aqueous layer containing sugars was neutralized with Amberlite IRA-400 (OH⁻ form), dried under N₂ and stored prior to analysis.

3.7. Determination of absolute configuration of monosaccharides

The absolute configurations of monosaccharide constituents of compounds 1 and 2 were determined according to the method reported by Tanaka et al. (2007) with the modifications described previously by us (Pérez et al., 2014). The derivatives of d-glucuronic acid, d-galactose and l-rhamnose in compound 1 and d-glucuronic acid and d-galactose in compound 2 were identified by comparison of their retention times (Rt) with those of authentic sugars (Sigma-Aldrich, Steinheim, Germany) treated in the same way as samples (Rt: d-glucuronic acid 10.26 min, l-glucuronic acid 10.14 min, d-galactose 9.94 min, l-galactose 10.03 min, l-rhamnose 11.39 min, d-rhamnose 9.80 min).

3.8. Phytotoxicity bioassay

Phytotoxicity bioassay with the monocot Allium cepa L. (onion) and dicots Lycopersicum esculentum Will. (tomato), Lepidium sativum L. (cress) and Lactuca sativa L. (lettuce) as Standard Target Species (STS) was conducted under the conditions reported in our previous work (Pérez et al., 2013a). The compounds were assayed at concentrations of 333, 100, 33, 10, 3.3, and 1 µM. Control samples (buffered aqueous solutions without any test compound) and the commercial herbicide Logran® (a combination of N-[(1,1-dimethyl-1H)-N-ethyl-6-[(methythio)phenyl]-3,5-triazine-2,4-diamine (Terbutryn, 59.4%) and 2-[(chloroethoxy)-N-[[4-(methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzene-sulfonamide (Triasulfuron, 0.6%), were used as internal references (Maclias et al., 2000) and were tested under the same conditions as samples. The evaluated parameters (germination rate, root length and shoot length) were recorded using a Fitomed® system (Castellano et al., 2001), which allowed automatic data acquisition and statistical analysis using its associated software. Data were analyzed statistically using Welch’s test, with significance fixed at 0.01 and 0.05. Results are presented as percentage differences from the control. Zero represents control, positive values represent stimulation, and negative values represent inhibition. The concentration that resulted in a 50% inhibition (IC₅₀ values) was calculated from the dose–response curve.

Acknowledgments

This work was supported by the seventh Framework Programs of European Community, PROFIENCY (Contract No. 245751) and OSCAR (Contract No. FP7-KBBE-2011-5-289277).

Appendix A. Supplementary data

NMR (1H, 13C, HSQC, HMBC, ROESY, DQF-COSY, HSQC-TOSY, selective TOCSY and ROESY), HRESI-TOFMS and ESI-MS/MS spectra for the new compounds (1 and 2). Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.phytochem.2015.05.020.

References

