Universidad de Cádiz

Proyectos de fin de carrera de Ingeniería Química

Facultad: CIENCIAS

Titulación: INGENIERÍA QUÍMICA

Título: Propuestas para la mejora de la calidad del agua en el parque de los lagos de Costa Ballena

Autor: Carlos TRONCOSO GIL

Fecha: Junio 2006
Índice

Documento 1: memoria

-Capítulo 1: Objeto, antecedentes y documentación

- FINALIDAD DEL PROYECTO..9
- USOS Y FUNCIONES PRINCIPALES DE LOS LAGOS .10
- EL ESTANQUE DE LOS LAGOS EN EL MARCO DE
 COSTA BALLENA. EVOLUCIÓN DEL DISEÑO..............13

-Capítulo 2: OBJETIVOS DE CALIDAD DEL AGUA.......17

-Capítulo 3: DESCRIPCIÓN

3.1.- OBRA CIVIL E INSTALACIONES.........................22

3.2.- FUNCIONAMIENTO..26
 3.2.1- CLORACION...26
 3.2.2- EVACUACIÓN...26
 3.2.3- SUMINISTRO DE AGUA A LA CASCADA Y
 BORBOTÓN...28
3.2.4- DISCREPANCIAS DEL FUNCIONAMIENTO PROYECTADO CON EL REAL.................................29

3.3.- PROBLEMÁTICA ASOCIADA Y DISFUNCIONES..32

-Capítulo 4: Actuaciones

5.1- NUEVA OBRA CIVIL E INSTALACIONES..........41
5.2- PROCEDIMIENTOS..44
5.3- PROPUESTAS PARA EL ENRIQUECIMIENTO DEL ECOSISTEMA...45
5.4- PRESERVACIÓN Y CONTROLES......................50
5.4.1- ESTACIÓN DEPURADORA DE AGUAS RESIDUALES..50
5.4.2- MANTENIMIENTO...50
5.4.3- CONTROL DE LAS AVES.................................50
5.4.4- SEGUIMIENTO Y CONTROL.............................51

-Capítulo 5: BIBLIOGRAFÍA..54
Anexos a la memoria

A1- PROCESOS DE TRANSFORMACIÓN DE LA CALIDAD DEL AGUA

A.1.- MODELO HIDRÁULICO

A.1.1 HIPÓTESIS SIMPLIFICATIVAS EMPLEADAS EN EL MODELO

4.1.2 BORBOTÓN

4.1.3 LAGO NORTE

4.1.4 LAGO SUR

4.1.5 CANAL

A2.- MODELOS BIOLÓGICOS

A3- CÁLCULOS

A3.1- CÁLCULO DE LA CONCENTRACIÓN POR EVAPORACIÓN

A3.1.1- CÁLCULO DEL INCREMENTO DE CONCENTRACIÓN MANTENIENDO LOS CAUDALES DE RECIRCULACIÓN ACTUALES

A3.1.2- INCREMENTO DE LA CONCENTRACIÓN CON CAUDALES DE RECIRCULACIÓN REDUCIDOS
A3.1.3- VALORES DE CONCENTRACIONES PARA UNA SALIDA DE AGUA COLOCADA EN EL LAGO NORTE

A3.2- RESPUESTA DEL SISTEMA A UN AUMENTO REPENTINO EN LA CONCENTRACIÓN EN EL AGUA PROCEDENTE DE LA EDAR

A3.3- CÁLCULO DE LAS CARGAS DE NUTRIENTES POR UNIDAD DE SUPERFICIE DE LOS LAGOS

A2- ANÁLISIS

A3- DOCUMENTACIÓN TÉCNICA

A3.1- ANEXO I DEL REAL DECRETO 509/1996

A3.2- ANEXO III DEL REAL DECRETO 509/1996
A4- PLANOS

01-00 LOCALIZACIÓN

01-01 EMPLAZAMIENTO

02-00 DISTRIBUCIÓN GENERAL EXISTENTE

03-00 PERFILES Y SECCIONES

04-00 ESTACIÓN Y FILTRACIÓN DE BOMBEO (I)

04-00 ESTACIÓN Y FILTRACIÓN DE BOMBEO (II)

05-00 DISTRIBUCIÓN DE AIREADORES

06-00 ALARGAMIENTO DE LA TUBERÍA NORTE
Capítulo 1: Objeto y Antecedentes
1.1- Finalidad del proyecto

El presente documento ha sido encargado por la Junta de Compensación de Costa Ballena Chipiona para identificar de manera sistemática y razonada las causas de aquellos fenómenos asociados al agua del parque de los lagos de Costa Ballena que impiden su uso como agua de riego y como elemento paisajístico, entre los que se destacan los altos niveles de demanda biológica de oxígeno (DBO) y de sólidos en suspensión, la turbiedad, color y olor del agua o la presencia de espumas.

También se trata de determinar las mejores soluciones a dichos problemas, entendiendo como mejores aquellas que reúnan el respeto el medio ambiente que forma parte de la filosofía de la urbanización, cumplan los objetivos de calidad de las aguas propuestos y sean económicamente ventajosas.
1.2- Usos y funciones principales de los lagos

Se pretende del parque de los lagos un uso acorde con la filosofía que anima el conjunto de la urbanización, como es el de proporcionar un lugar de esparcimiento sostenible y respetuoso con el medio ambiente. Teniendo en cuenta las condiciones de déficit hídrico de la zona geográfica donde se ubica Costa Ballena, dicho uso sostenible contemplará también el empleo del agua como reservorio en caso de necesitar el riego de un caudal mayor que el que la estación depuradora de aguas residuales (EDAR) de la urbanización es capaz de proporcionar en un momento determinado.
Los usos que se le puedan dar a los lagos son múltiples, muchos de ellos condicionados por la calidad del agua. El objetivo de éste estudio es hallar los procedimientos mejores para lograr en los lagos un agua con la calidad suficiente para su uso:

- Como reservorio para agua de riego. Para el riego de Costa Ballena Chipiona se ha calculado, previamente a la redacción del estudio, que son necesarios al menos 3.000 m³ diarios.

- Como elemento integrante del paisaje, de forma que pueda ser disfrutado por los habitantes de la urbanización.

El primer objetivo requiere agua con unos valores de sólidos en suspensión, materia orgánica y microorganismos patógenos que no superen los límites preestablecidos.

El segundo requisito supone lograr un agua libre de malos olores, espumas, insectos y otros elementos antiestéticos y desagradables, pero idealmente
manteniendo condiciones para que se establezcan en ellas plantas, peces y aves.

De las dos condiciones u objetivos propuestos, el primero es el más restrictivo, dado que es posible encontrar especies animales y vegetales capaces de colonizar tanto agua aptas como no aptas para el riego.

Además, ambos objetivos pueden ser contradictorios puesto que existen determinadas circunstancias en las que la actividad de los seres vivos degrada la calidad del agua.
1.3- El estanque de los lagos en el marco de Costa Ballena. Evolución del diseño

Costa Ballena está situada en la unión de los términos municipales de Rota y Chipiona, a 7 kilómetros de la ciudad de Rota y 5 de Chipiona, y nace como un proyecto de la Junta de Andalucía diseñado para impulsar el turismo de calidad en la Costa de la Luz. Actualmente cuenta con una extensión de casi 4 km² y aún no está totalmente finalizada. Se accede al complejo por la carretera autonómica A-491.

La Costa de la Luz es la vertiente atlántica de Andalucía, un arco que se extiende desde Ayamonte en Huelva hasta Tarifa en Cádiz. Reúne excelentes condiciones para el turismo, con más de tres mil horas anuales de sol y temperaturas medias que oscilan entre los 14º en invierno y los 22º en verano.

En la concepción de Costa Ballena se han empleado recursos probados para lograr la máxima calidad de vida para los residentes. Entre ellas se encuentran la limitación
de las alturas de las viviendas, la recogida neumática de
basuras, completos equipamientos deportivos, redes de
canalización de gas y de fibra óptica, y una fuerte apuesta
por la integración con el entorno.

Parte de éste compromiso es la construcción del
parque de los lagos. Éste se concibió como un lugar donde
poder disponer de un reservorio de agua tan natural como
fuese posible con el que añadir un valor paisajístico y de
unión con el entorno, que sirviera como lugar de
esparcimiento para los habitantes de la urbanización, y en
su caso como reservorio de agua de riego, si bien ésta
función aún no se ha cumplido. El parque sirve también
como límite natural entre aquella zona de la urbanización
situada dentro del término municipal de Rota y aquella
situada en término municipal de Chipiona.

El desarrollo del parque de los lagos sufrió cambios
considerables desde su concepción hasta su ejecución
final. Los primeros esbozos planeaban un lago sur abierto
al mar, donde variaciones de la salinidad de las aguas
sirvieran para crear una variedad de ecosistemas y por
tanto aumentará su valor ecológico, así como emplear el lago norte como reservorio de agua para el caso de que ocasionalmente se necesitara un mayor caudal de agua del que la estación depuradora de aguas residuales fuese capaz de proporcionar.

Descartado éste proyecto, se decidió hacer del lago sur una parte arquitectónicamente independiente del lago norte, como centro de un elemento urbanístico de la llamada Plaza del mar. Por ese motivo sus formas (geométricas y angulares en caso del lago sur) difieren tanto de las del lago norte (irregulares y orgánicas). Dicho diseño quedó fijado para cuando se decidió englobar ambos lagos en el mismo parque.

Para el llenado de los lagos se han empleado aguas residuales procedentes de la EDAR de Roa Martín, encargada del tratamiento de las aguas de Costa Ballena - Rota, la cual tratará también, una vez ampliada, las aguas procedentes de Costa Ballena - Chipiona.
Capítulo 2: Objetivos de calidad del agua
Se pretende emplear el agua de los lagos para el riego de parques y jardines mediante goteo. Para éste uso se pide agua con las siguientes características:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DBO mg O₂/l</td>
<td>30</td>
</tr>
<tr>
<td>Sólidos en suspensión, mg/l</td>
<td>30</td>
</tr>
<tr>
<td>Coliformes totales UFC/100 ml</td>
<td>0</td>
</tr>
</tbody>
</table>

Las cifras anteriores se establecen a partir del número de coliformes fecales y de la presencia de bacterias patógenas como la Salmonella, Shigella y Cholera. No hay un consenso sobre el número máximo de coliformes permisible para el agua de riego. Por ejemplo, la Organización Mundial de la Salud, establece que para el riego "sin restricción" (es decir, para cualquier tipo de cultivo) el agua no debe tener más de 100 coliformes fecales/100 ml, mientras que en California y Arizona, las aguas residuales depuradas para el riego de cultivos que se consumen crudos no pueden tener una media
El objetivo de cero coliformes fecales es ambicioso pero realista, puesto que se tiene la intención de desinfectar el agua de riego en el tratamiento terciario instalado en Costa Ballena y los lagos son capaces de eliminar los microorganismos patógenos.

Los valores de DBO y sólidos en suspensión son necesarios para evitar crecimiento bacteriano formando biopelículas (fouling) en los sistemas de regadío por goteo como los empleados en Costa Ballena, y las consecuentes obturaciones. Una concentración alta de sólidos en...
suspensión puede también llevar a la obturación de los orificios de los goteos.

En cuanto a la calidad del agua necesaria para uso paisajístico, se dispone de un grado mayor de libertad en sus características. Tanto estanques de aguas limpias como estanques con unas producciones de biomasa relativamente altas se han empleado como elementos ornamentales, los segundos con más frecuencia en Oriente, donde además se los usa como fuente de alimento en forma de peces.
Capítulo 3: Descripción
3.1- **Obra civil e instalaciones**

Tanto el canal como los lagos tienen secciones tipo detalladas en el plano 03-00. Las secciones tienen tres partes diferenciadas:

- Losa de hormigón H-200 de espesor 10 cm., con un mallazo electrosoldado 150.150.5 tipo AEH-500T en el centro de la misma.

- Lámina de polietileno de 0,2 mm. de espesor que evita infiltraciones desde el hormigón al suelo estabilizado y la corrosión de la armadura de la losa.

- Suelo estabilizado con cal de un espesor de 30 cm.

Ésta sección puede soportar el paso de maquinaria en las etapas de vaciado y limpieza de fondos.

Los bordes de lago norte y canal tienen un borde de anchura variable destinados a albergar plantas acuáticas,
separados del lago norte y el canal por un muro de hormigón. Éstos bordes están comunicados con el cuerpo principal del lago y canal por orificios practicados a intervalos regulares en la parte inferior del muro.

El agua procedente de la EDAR llega al lago norte por una tubería de Φ 200 y al último tercio del canal mediante una tubería también de Φ 200.

En las embocaduras del lago norte al canal y del lago sur al canal hay construidas unas pozas de aprox. 15 metros de diámetro y 1 metro de profundidad, pensados para dar refugio a los peces cuando se proceda al vaciado de los lagos para mantenimiento.

Desde los puntos inferiores de las pozas parten unos colectores de acero de Φ 300 que evacuan a la red de drenaje de la urbanización. Estas tuberías llevan una rejilla de 15x15 mm. en su sección inicial que evita la entrada de peces durante el vaciado. Entre éste punto de salida y la conexión a un pozo existente hay una arqueta con una válvula de compuerta que sólo se abre durante el vaciado.
La superficie de canal y lagos es de unos 58.000 m2 y el fondo tienen una pequeña pendiente para facilitar la salida y circulación del agua. El volumen total de lagos y canal es de 86.000 m3.

En el tercio inferior del canal, en su lado oeste, se ubica el sistema de cloración, bombeo y filtración cuyos detalles se indican en los planos 04-00 y 04-01. Dicha estación de bombeo tiene la finalidad de tratar el agua químicamente e impulsarla hasta ambos lagos.

El sistema de tratamiento del agua de los lagos consiste en una cloración previa, bombeo y filtrado por un grupo compacto formado por 10 filtros de arena y 4 filtros de malla (apertura # 0,115 mm)

Depósito de cloración:

Es en éste depósito donde se vierte el hipoclorito. Tiene unas dimensiones de 20 m. x 6 m y una profundidad de 3m., totalizando 360 m3.
La entrada de la cubeta dispone de dos bombas de hipoclorito.

Desde el depósito de cloración salen 3 tuberías de 6 pulgadas, que son las aspiraciones de 3 bombas que están en el depósito de bombeo y filtración, y desde éste una tubería de PVC de 4 atmósferas y diámetro 315 mm que es la de impulsión, que a su vez se divide en dos: una de Φ 180 hacia el lago sur y otra de Φ 200 hacia el lago norte.

Al borbotón y a la cascada se suministra agua mediante una única bomba de 60 kilowatios situada cerca de la unión del lago norte y el canal. La ubicación de la bomba puede apreciarse en el plano 02-00
3.2- Funcionamiento

3.2.1- Cloración

Las dos bombas de inyección de hipoclorito están diseñadas para funcionar ambas de noche, y de día una sola, alternando la bomba en funcionamiento de forma alternativa. La cubeta de cloración está diseñada para lograr un tiempo de retención de entre 1 y 2 horas, pretendiendo así la eliminación de la mayor parte de los organismos planctónicos. La cantidad de hipoclorito que debe inyectarse es de 664 gr/hora por bomba, por lo que de noche ésta cantidad se dobla.

3.2.2- Evacuación

Los lagos deben vaciarse una vez al año o una vez cada dos años a fin de limpiar el fondo y los márgenes, así como reponer las plantas de los bordes que lo precisen. Hay que evacuar por tanto 86000 m3 de agua, de los cuales aproximadamente la mitad se encuentra en cada lago.
La evacuación se produce a través de tuberías de \(\Phi 400 \). No se evacuarán las pozas para peces, donde éstos se refugiarán mientras que dure la operación de limpieza, que no debe prolongarse más de dos días. El procedimiento prevé vaciar el lago Norte, limpiarlo, y a continuación llenarlo mientras se vacía el canal y el lago Sur. Éstos se llenan a partir de que el agua rebose el nivel de la primera cascada del canal.

Debe notarse que la cascada situada más al sur dispone de un paso de agua de \(\Phi 120 \) a fin de que se pueda vaciar el tramo comprendido entre ellas, pasando el agua al lago Sur.

Una vez finalizada la limpieza y tras alcanzar el agua de llenado el nivel de vertido (cota 7,90) pasa al canal y por el paso de agua \(\Phi 120 \) llega al lago Sur. Cuando el lago Sur alcance la cota definitiva (4,90) se coloca el cierre del paso de agua y se llena el tramo de canal intermedio (cota 6,40).
De esta forma el proceso de filtración y cloración puede empezar llenando el lago Sur y antes de llenar el tramo de canal intermedio.

El proceso de vaciado de los lagos tiene una duración del orden de las 30 horas y el de llenado de 7 días aproximadamente, supuesto un caudal disponible durante la noche (de 8 PM a 8 AM) de 100 litros/segundo.

3.2.3- Suministro de agua a la cascada y borbotón del estanque

La cascada situada en una colina de 7 metros de altura tiene una anchura del orden de los 5 metros. Para que se aprecie el efecto del agua es necesario un caudal de al menos 40 litros por segundo y metro de anchura, por lo que el caudal es de 200 litros/segundo.

Asimismo en el estanque aparece un borbotón de cierta intensidad cuya agua vierte por una cascada menos apreciable que la de la colina. Se dirige al borbotón un caudal de aproximadamente 100 litros/segundo, resultando...
un caudal total entre borbotón y cascada de 300 litros/segundo. El caudal se bombea mediante una bomba situada cerca de la unión del lago norte y el canal. La ubicación de ésta bomba puede apreciarse en el plano 02-00

3.2.4- Discrepancias del funcionamiento proyectado con el real

La limpieza de los lagos no se ha llevado a cabo con la periodicidad requerida, sino que se han llegado hasta espacios de hasta 8 años entre vaciados en uno de los lagos. La acumulación consiguiente de sedimentos ha contribuido a exacerbar el problema.

Las pozas diseñadas para cobijar a los peces no han cumplido su función. Puesto que su nivel es inferior al del resto del fondo, los sedimentos se han depositado en ellos de forma preferente, por lo que el espesor de lodos en las pozas era considerable en cada limpieza y no ha habido más remedio que vaciarlos de agua.
 Debido al coste del hipoclorito tradicionalmente no se realiza la cloración del agua de forma continuada, sino cuando las condiciones de anoxia del lago así lo aconseja. En cualquier caso, el proceso de cloración tal como ha sido construido no es el adecuado para lograr los objetivos propuestos en el proyecto original, que son los de lograr una acción de control de las algas.

El motivo de esto es que el sistema de cloración se concibió como el tradicional empleado en la desinfección de efluentes de depuradoras. En éstos casos, el objetivo a conseguir con la cloración es la obtención de un vertido libre de microorganismos. No importa lo que ocurra con el agua posteriormente, que en cualquier caso será lo que le ocurra al agua en el medio al que se vierta. En el caso de los lagos, lo que se consigue con éste procedimiento es obtener volúmenes de agua libre de algas que, al mezclarse con la masa de agua de los lagos, colonizada por los microorganismos, perderá su limpieza de forma a efectos prácticos instantánea. Además, la máxima efectividad del cloro se consigue en un agua de pH cercana a 7; en las condiciones en las que se encuentran los lagos,
a pH superior a nueve, su acción es mucho más reducida o nula.

Recientemente el lago norte se ha limpiado y vuelto a llenar. En ésta ocasión se ha abandonado la práctica de emplear el depósito de cloración en favor de la cloración directa de la masa de los lagos –en realidad del lago norte y el canal-. En principio ésta práctica es más adecuada y puede llegar a tener los resultados obtenidos si se emplea la cantidad de cloro adecuada; éste procedimiento es el que se emplea en las piscinas, que es la comparación más apropiada al procedimiento de clorar los lagos.
3.3- Problemática asociada y disfunciones

Los principales problemas que se observan en los lagos son la turbiedad, los malos olores y la formación de lodos. Gran parte del problema se debe a la no renovación del agua de los lagos, que empeora los fenómenos derivados de la alta concentración de nutrientes en el agua; los detalles del diagnóstico se ofrecen a continuación.

Tras una inspección visual y examinando los valores de los análisis a las aguas de los lagos (Ver Anexo 2) y corrientes de entrada observamos que presentan relativamente altas concentraciones de nutrientes y que su estado corresponde a una disfunción similar observada en lagos y cursos de agua naturales conocidas como eutrofización.

Se conoce como eutrofización la proliferación excesiva de microorganismos unicelulares fotosintéticos en cursos y masas de agua debida a la elevada concentración de nutrientes.
Esta sobreabundancia de algas desencadena una serie de reacciones, que en resumen son:

Elevada productividad del agua en vida animal y vegetal debido a la gran abundancia de nutrientes. Las algas colonizan las capas superiores, bloqueando la luz solar y matando los macrofitos -plantas pluricelulares- del fondo.

Cuando los animales y plantas en el sistema comienzan a morir, se depositan en el fondo, donde su descomposición crea una elevada demanda de oxígeno, agotando su concentración en las capas inferiores.

Las condiciones de anoxia en el fondo son empeoradas por la falta de luz solar, que impide una fotosíntesis que oxigenaría el agua. La descomposición de la materia orgánica produce en el proceso gases como metano y ácido sulfhídrico, de olor desagradable.

Cuando los síntomas anteriores se intensifican, puede llegarse el caso de que la mayor parte o la totalidad
del lago alcance condiciones de baja concentración de oxígeno. Si eso ocurre, los gases generados en el fondo del lago no se oxidan en la capa superior de agua y escapan del lago, provocando malos olores. Éste estado terminal se conoce como distrofia.

Éste proceso lleva a la masa de agua a tener las siguientes características:

- Opacidad debido a la gran cantidad de bacterias en el agua y a los lodos resuspendidos por la generación de gases y la actividad de la fauna.

- Formación de agregados de bacterias en forma de natas o espumas de aspecto desagradable, si se produce el desarrollo de algas filamentosas.

- Malos olores debido a los gases formados en la descomposición anaerobia de la materia orgánica depositada en el fondo.
- Toxicidad del agua debido a metabolitos segregados por las algas.

- Rápida sedimentación de una gruesa capa de limos, resultante de la materia orgánica sin mineralizar.

- Las condiciones de anoxia y elevada concentración de nutrientes invitan a la proliferación de microorganismos patógenos.

- Mortandad de peces debido a la falta de oxígeno en el agua.

Además, el agua tomada de regiones anóxicas puede ser perjudicial para los equipos de bombeo y transporte de agua.

La eutrofia, entendida como la alta concentración de nutrientes no es en sí dañina si no se dan las condiciones que a su vez llevan a la degeneración del lago o curso de agua; la eutrofización significa en definitiva una alta producción de biomasa, cosa que puede resultar...
beneficiosa para algunos usos si el sistema puede tratar la producción incrementada.

Uno de los principales problemas de los lagos es que no tienen salida de agua y por lo tanto no presentan posibilidad de renovación. La consecuencia es la progresiva acumulación, a causa de la evaporación del agua, de nutrientes y de cualquier otra sustancia sin intercambio atmosférico, la única posibilidad de salida en cantidades apreciables de los lagos. Es decir, cuando se produce la evaporación del agua las sustancias que lleva en disolución se quedan en los lagos, concentrados. Para recuperar el nivel del agua se introduce un nuevo caudal de agua, el cual porta una cantidad de contaminantes los cuales se vuelven a concentrar. Debido a éste fenómeno las presentes condiciones se hubieran alcanzado con el tiempo aún con una entrada de fósforo pequeña en el agua procedente de la EDAR.

De hecho, la concentración de fósforo en el efluente de la EDAR no es grande comparados con otros efluentes, que pueden alcanzar en algunos casos concentraciones de
20 mg/l e incluso más, comparados con los 3,8 mg/l medidos en el agua que llega a los lagos.

La salida de agua no tenía porqué ser continua; el problema hubiese alcanzado niveles menores de haberse cumplido las recomendaciones contenidas en el proyecto de ejecución de los lagos de un vaciado cada año o cada dos años. La importancia de la renovación se comprende al estudiar los lagos empleados como reservorios de agua para los campos de golf de Costa Ballena; aunque se emplea la misma agua para llenarlos que la que se emplea en los lagos, la frecuente renovación del agua los mantiene en condiciones aceptables, aunque altamente eutrofizados.

Se observa también la formación de espumas en los lagos. La causa es la presencia de detergentes en el agua, procedentes en su mayoría del uso doméstico. Éste es un problema común en aquellos casos que implican el uso de aguas residuales, problema empeorado por la falta de renovación del agua; éstos mismos detergentes no producen problemas en los lagos destinados al abastecimiento de los campos de golf.
Capítulo 4: Actuaciones
4.1- Propuestas de actuación

Las conclusiones obtenidas en los puntos anteriores y en el anexo de cálculos son que los mecanismos más adecuados por los que podemos mejorar la calidad de las aguas de los lagos son los siguientes:

- Oxigenación del volumen de agua

- Disminución de la entrada de nutrientes. El límite superior para la entrada de fósforo lo fijaremos en el que corresponde a lo indicado en el Real Decreto 509/1996, de 15 de Marzo, desarrollo del Real Decreto-Ley 11/1995, de 28 de Diciembre, para vertidos a “zonas sensibles”, que en nuestro caso será de no más de 0,8 mg/l

Debe notarse que incluso con ésta entrada de nutrientes habrá la suficiente como para que el desarrollo de algas suponga que el agua adquiera un tinte verdoso, más o menos intenso, siendo muy difícil reducir los mismos a niveles oligotróficos mediante la simple reducción de la entrada de fosfatos, dado que la máxima
concentración permitida en el agua de entrada necesaria para ello es muy reducida.

- Renovación del agua, incluyendo el movimiento de las aguas de los lagos para renovar el agua de las zonas donde la propia construcción de los lagos impide una mezcla con los volúmenes vecinos (zonas muertas)

Los métodos específicos se detallan a continuación:

4.2- Nueva obra civil e instalaciones

Serán necesarias una serie de instalaciones nuevas o la ampliación de instalaciones ya existentes:

Ampliación del tratamiento terciario del agua, para lograr los niveles de fosfatos indicados anteriormente en el agua que llega a los lagos. La opacidad del agua dependerá del desarrollo de algas, el cual depende, de forma no lineal, de la cantidad de nutrientes, por lo que se aconseja mejorar el funcionamiento del tratamiento terciario
por encima de los límites indicados si es posible y viable económicamente.

Debe prolongarse de la tubería de entrada al lago Norte, conectándola con parte de la tubería existente destinada actualmente al transporte del agua al lago norte después del proceso de cloración. La disposición puede observarse en el plano 06-00. Ésta ordenación asegurará en lo posible una adecuada renovación del contenido de todo el lago norte.

Deben instalarse aireadores o agitadores en los puntos indicados en el plano 05-00, los cuales deberán funcionar de forma continua.

Se recomienda por parte de los fabricantes una potencia de agitación de 1 CV por cada 3.000 – 4.000 m3 de agua a oxigenar. Se ha optado por el límite superior porque las recomendaciones no tienen en cuenta la oxigenación proporcionada por las algas o las caídas de agua, o la renovación que tendrán los lagos.
Puesto que debe instalarse un aireador en el borbotón, la entrada de agua al borbotón debe modificarse de forma que no interfiera en el funcionamiento del aireador, lanzando el agua en dirección horizontal, mediante la instalación de un codo de 90º al final de la conducción de agua al borbotón.

Dado que la actual estación de bombeo cumple funciones de cloración y recirculación interna del agua que juzgamos no son necesarias, puede usarse como estación de bombeo del sistema de riego ya que su caudal y potencia son las adecuadas a la que se proyecta tenga la red de riego de Costa Ballena Chipiona.

Se desaconseja el empleo de plantas acuáticas flotantes a menos que su introducción forme parte de una repoblación con plantas autóctonas destinada a mejorar el ecosistema de los lagos. Véase el apartado 5.3.

5.2- Procedimientos
Deberán tomarse en cuenta las siguientes recomendaciones acerca de las instalaciones ya existentes:

Se desaconseja el empleo de cloro, alguicidas y similares.

Debido a la construcción de los lagos, las plantas colocadas en la ribera no suponen una fuente significativa de depuración de las aguas. Por tanto, no se hacen recomendaciones de especies empleadas en cuanto a su utilidad en la mejora de la calidad del agua de riego.

Sin embargo, debe asegurarse que el sustrato de las plantas no suponga una fuente significativa de sólidos en suspensión. Además, deben segarse y retirarse para evitar que caigan al agua y formen agregados flotantes que puedan servir de refugio a insectos molestos.

Las aves que viven actualmente en los lagos realizan una extracción neta de nutrientes de los lagos, ya que la cantidad que extraen al alimentarse es mayor que la
contenida en los excrementos que depositan en ellos. Por esto mismo debe desaconsejarse que se les dé de comer, ya que una fracción importante de la comida llegará a los lagos, bien arrastrada directamente o en forma de excremento.

5.3-Propuestas para el enriquecimiento del ecosistema

Las propuestas contenidas en el punto 5 contienen las actuaciones mínimas que se deben llevar a cabo para lograr los objetivos propuestos relacionados con la calidad del agua; siguiendo éstas recomendaciones se logrará una serie de extensiones de agua de color turquesa.

Sin embargo razonamos que si la simple extensión de agua resulta placentera, el disfrute estético es mayor si pueden además contemplarse las evoluciones de peces y aves o pueden contemplarse una variedad de especies vegetales acuáticas. Por ese motivo, es deseable un ecosistema lo más variado posible.
Es importante señalar que un ecosistema variado equivale a un ecosistema maduro, estable en el tiempo, en el que especies de crecimiento lento, pero más eficientes, han tenido tiempo de establecerse y desplazar a especies oportunistas –que en muchos casos son consideradas molestas o plagas- y en el que se ha podido establecer una cadena trófica. Por éste motivo, si se toma la decisión de seguir esta alternativa, deberán cuidarse las características de los lagos, cuidando de que no sufra variaciones importantes, de caudal o de otro tipo, dado que éstas variaciones generan desequilibrios capaces de alterar las poblaciones.

Un ecosistema integrado con el entorno estará habitado por especies propias de la región. La siguiente lista presenta especies de hábitats palustres aptas para diversificar la vegetación del parque de los lagos de la Costa Ballena. Se trata de especies tanto de ribera como del interior de curso lentos e incluso de estancamientos, que se ven favorecidas por la eutrofía de las aguas e incluso son tolerantes a la contaminación, con capacidad tanto depurativa como oxigenadora de las aguas.
Presentan portes y fisonomías diversas, produciendo espadañales, juncales, praderas y arbustedas o bien capacidad para extenderse sobre la superficie del agua, compitiendo fuertemente por la luz. Son todas especies autóctonas de las zonas húmedas de aguas dulces, o ligeramente salobres, del litoral occidental andaluz, que en su mayoría, presentan, además de ecológico, alto valor ornamental.

Especies de ribera o márgenes

Typha domingensis, enea
Typha latifolia, espadaña
Phragmites australis, carrizo
Juncus marítimus, junco marítimo,
Juncus subulatus
Juncus bufonius
Juncus capitatus
Juncus articulatus
Scirpus marítimus, castañuela
Scirpus holoschoenus, junco
Cyperus longus
Cyperus capitatus
Cyperus fuscus
Tamarix gallica, taraje
Tamarix africana, taraje
Arum italicum, aro
Iris pseudacorus, lirio amarillo
Paspalum paspaloides,
Mentha suaveolens, menta
Mentha pulegium, poleo

Flotantes, sumergidas y oxigenadoras

Potamogeton pectinatus,
Zannichellia peltata,
Ruppia drepanensis,
Lannichelia palustria,
Nymphaea alba, nenúfar blanco
Nuphar lutea, nenúfar amarillo
Lemna minor, lenteja de agua
Callitriche stagnalis, bricio
Callitriche obtusangula
Ranunculus peltatus, manzanilla de agua
Ranunculus ophioglossifolius
Ranunculus macrophyllus
Ranunculus bulbosus
Ranunculus muricatus
Ranunculus parviflorus
Ranunculus paludosus
Ranunculus hederaceus
Ceratophyllum demersum

5.4- Preservación y controles

5.4.1- Estación depuradora de aguas residuales.

El proyecto de modificación de la EDAR de Costa Ballena debe incluir controles del nivel de nutrientes en el efluente según marca el anexo III del Real Decreto 509/1996, para verificar que se mantienen en el nivel deseado.

5.4.2- Mantenimiento
Debido a la construcción de lagos y canal, éstos actúan como decantadores, por lo que cierta cantidad de deposición de sedimento es inevitable. El sedimento se removerá en los lagos debido a la acción de los agitadores o aireadores, propiciando su salida; aún así, la formación de lodos o sedimentos es inevitable. Los lodos deberán vaciarse con una periodicidad de al menos una vez cada diez años. Éste período debe ser más corto si la producción de lodos es más rápida de lo esperado debido a otros factores, como el aporte de arenas de los caminos de tierra próximos a los lagos y canal, y afecta negativamente a la calidad del agua.

En el período posterior al llenado es previsible que especies oportunistas colonicen el agua. Algunas de éstas especies pueden ser problemáticas en los primeros días después del llenado de los lagos, principalmente insectos y algas filamentosas. Éstas algas forman con facilidad agregados flotantes de aspecto desagradable, que luego son arrastrados hasta las orillas. Debido al régimen de vientos dominantes en la región, dichos agregados serán arrastrados a zonas de los lagos de fácil acceso desde la
orilla, donde la mejor opción es la remoción mecánica de las mismas.

5.4.3- Seguimiento y control

Para realizar en el futuro otras actuaciones sobre los lagos o mejorar las existentes es de gran interés disponer de una serie de datos de las variables que intervienen. Para ello sería necesario hacer un seguimiento de sus propiedades analizando el agua para hallar los siguientes valores:

Concentración de clorofila a
Concentración de fósforo
Concentración de nitrógeno
Demanda biológica de oxígeno (DBO)
Demanda química de oxígeno (DQO)
Oxígeno disuelto
Recuentos de bacterias (UFC de aerobios y patógenos)
Además de un seguimiento de la composición del agua procedente de la EDAR, hallando los valores medios de concentración de fósforo y nitrógeno.

Asimismo, es preciso controlar y registrar los caudales de entrada y salida de los lagos, además de los caudales internos bombeados desde el lago sur al norte, y del lago norte al borbotón.

Los controles deberán hacerse con al menos una periodicidad mensual al borbotón, lago norte, canal en su parte final y lago sur.
Capítulo 5: Bibliografía
La bibliografía empleada en la realización del presente proyecto de fin de carrera es la siguiente:

Seoanez, M. “Tratamiento por humedales artificiales” Ediciones Mundiprensa.

González, I. “Costa Ballena, un lugar al sol”, Euromedia Comunicación

Margalef, R. “Ecología”, Ediciones Omega.

MOPT (1.991) "Depuración por lagunaje de aguas residuales. Manual de operadores." Secretaría General Técnica del MOPT, Madrid

Documento II: Anexos a la memoria
A1-Procesos de transformación de la calidad del agua

A1.1- Modelo hidráulico del parque de los lagos

El empleo de un modelo para comprender los procesos de transformación del agua es imprescindible para poder tomar decisiones sobre las actuaciones que se llevarán a cabo sobre los lagos. Existen fórmulas y correlaciones en la bibliografía con las que se podrían simular el comportamiento hidráulico de los lagos; sin embargo, éstas correlaciones conducirían a resultados muy alejados de la realidad al no tener en cuenta las características del parque, como la división existente o la posibilidad de recircular el agua y por tanto su utilidad sería muy limitada.

A1.1.2- Hipótesis simplificativas empleadas en el modelo

El modelo se basa en balances de materia. Se ha simplificado el comportamiento de lagos y borbotón
aproximándolos a tanques de mezcla completa. El canal se ha supuesto como un flujo en pistón. El uso de éstas simplificaciones es norma en diseño de sistemas de lagunaje y en los modelos empleados en limnología.

Se ha supuesto que las constantes de velocidad serán iguales en cualquier parte del sistema en un momento determinado.

Se ha supuesto que la evaporación sólo dependerá de la superficie de agua expuesta y no variará localmente.

A pesar de que la segunda entrada de aguas residuales al sistema se realiza en el último tercio del canal, está lo suficientemente próximo al lago sur como para considerar que la entrada se realiza directamente al lago sur, y no al canal.

Al hallar las ecuaciones de estado no estacionario se ha supuesto que la concentración de las demás partes del lago permanece constante. No hacerlo así supondría complicar la resolución y las ecuaciones más allá de lo que
justificaría su utilidad prevista. Sin embargo, excepto en el caso de la relación lago norte – borbotón, hay que tener en cuenta que el canal actuará como retardante de los cambios ocurridos en el sistema de los lagos, ya que un cambios en las condiciones del agua en el lago norte no afectarán al lago sur hasta que el agua haya recorrido el canal; por lo tanto, puede emplearse con confianza las ecuaciones en estado no estacionario para períodos de hasta tres o cuatro días.

Coincidiendo con la bibliografía se han supuesto que la mayoría de las reacciones de generación – desaparición, incluyendo el crecimiento de microorganismos, obedece a ecuaciones de primer orden.

Se presentan cálculos para estado estacionario, sin variación de las condiciones de los lagos con el tiempo, y en estado no estacionario (cuando influye la variable tiempo)
A1.1.3-Nomenclatura empleada en el modelo

CB = Concentración en el borbotón.
CC = Concentración al final del canal.
CCI = Concentración en un punto l
cualquiera del canal
CN = Concentración en el lago norte.
CS = Concentración en el lago sur.
CB0 = Concentración en el borbotón en el
momento inicial
CN0 = Concentración en el lago norte en el
momento inicial
CS0 = Concentración en el lago sur en el
momento inicial
QVB = Volumen de agua evaporado del
borbotón
QVC = Volumen de agua evaporado del canal
QVN = Volumen de agua evaporado del lago
norte
QVS = Volumen de agua evaporado del lago
sur

QP\(B\) = Caudal de sustancia que llega al borbotón por fuentes difusas.

QP\(C\) = Caudal de sustancia que llega al canal por fuentes difusas.

QP\(N\) = Caudal de sustancia que llega al lago norte por fuentes difusas.

QP\(S\) = Caudal de sustancia que llega al lago sur por fuentes difusas.

QR\(1\) = Caudal de agua bombeada del lago norte al borbotón.

QR\(2\) = Caudal de agua bombeada del lago sur al lago norte.

Q0\(N\) = Caudal de salida del agua de riego bombeado desde el lago norte.

Q0\(S\) = Caudal de agua de riego bombeado desde el lago sur.

Qa = Caudal de agua desde el borbotón al lago norte.

Qb = Caudal de agua desde el lago norte al canal.

Qc = Caudal de agua desde el canal al lago sur.
\[Q_{e1} = \text{Caudal de entrada de agua procedente de la EDAR al lago norte.} \]

\[Q_{e2} = \text{Caudal de entrada de agua procedente de la EDAR al lago sur.} \]

\[Q_{Cl} = \text{Caudal en un punto l cualquier del canal} \]

\[t = \text{Tiempo.} \]

\[A_m = \text{Área media de la sección del canal, aprox. 1,11 m}^2 \]

\[W = \text{Constante de velocidad de reacción.} \]
Diagrama de corrientes:

Diagrama de concentraciones:
A1.1.4- Borbotón

Las ecuaciones para el borbotón son las siguientes:

A.1.1.4.1- En estado estacionario

Balance de materia para el agua:

\[Q_{R1} = Q_{VB} + Q_a \]

Balance de materia para una sustancia cualquiera:

\[Q_{R1} C_N + Q_{PB} + W V_B C_B = Q_a C_B \]

De la que sólo hay que separar la variable \(CB \) para hallar la concentración de una sustancia en el lago:

\[C_B = \frac{Q_{R1} C_N + Q_{PB}}{W V_B + Q_a} \]
A1.1.4.2- En estado no estacionario

\[V_B \frac{dC_B}{dt} = Q_{R_1}C_N + Q_{PB} + WV_B C_B - Q_a C_B \]

Separando variables:

\[\frac{dC_B}{Q_{R_1}C_N + Q_{PB} + C_B(WV_B - Q_a)} = \frac{dt}{V_B} \]

Integrando:

\[\int_{C_{B_0}}^{C_B} \frac{dC_B}{A + BC_B} = \int_{t_0}^{t} \frac{dt}{V_B} \]

Donde:

\[A = Q_{R_1}C_N + Q_{PB} \]
\[B = W V_B - Q_a \]

De la integración resulta:

\[
\frac{\ln(A + B C_B)}{B} - \frac{\ln(A + B C_{B0})}{B} = \frac{t - t_0}{V_B}
\]

De donde se obtiene:

\[
\frac{A + B C_B}{A + B C_{B0}} = \exp\left(\frac{B(t - t_0)}{V_B}\right)
\]
A1.1.5- Lago norte

Las ecuaciones para el lago norte son las siguientes:

A1.1.5.1- En estado estacionario

Balance de materia para el agua:

\[Q_a + Q_{e1} + Q_{R2} = Q_{R1} + Q_{VN} + Q_B + Q_{0N} \]

Balance de materia para una sustancia cualquiera:

\[Q_0 C_S + Q_a C_B + Q_P N + Q_{e1} C_e + W V C_N = Q_{0N} C_N + Q_B C_N + Q_{R1} C_N \]

Aislando la variable \(C_N \) se obtiene:

\[C_N = \frac{Q_{R2} C_S + Q_a C_B + Q_P N + Q_{e1} C_e}{Q_{0N} + Q_B + Q_{R1} - W V N} \]
A1.1.5.2- En estado no estacionario:

\[V_N \frac{dC_N}{dt} = A + BC_N \]

Donde:

\[A = Q_{R2} C_S + Q_a C_B + Q_{PN} + Q_{c1} C_e \]

\[B = W V_N - Q_{0N} - Q_b - Q_{R1} \]

Separando variables e integrando resulta:

\[\int_{C_{N0}}^{C_N} \frac{dC_N}{A + BC_N} = \int_{t_0}^{t} \frac{dt}{V_N} \]
Resolviendo la integral:

\[
\ln(A + BC_N) - \ln(A + BC_{N0}) = \frac{t - t_0}{B/V_N}
\]

De lo que resulta:

\[
\frac{A + BC_N}{A + BC_{N0}} = \exp\left(\frac{B(t - t_0)}{V_N}\right)
\]

A1.1.6- Lago sur:

Las ecuaciones para el lago sur son las siguientes:

A1.1.6.1- En estado estacionario

Balance de materia para el agua:

\[
Q_C + Q_{e2} = Q_{R2} + Q_{VS} + Q_{0S}
\]

Balance de materia para una sustancia cualquiera:
\[Q_C C_C + Q_{PS} + Q_{e2} C_e + WV_S C_S = Q_{0S} C_S + Q_{R2} C_S \]

Aislando la variable CS se obtiene:

\[C_S = \frac{Q_C C_C + Q_{PS} + Q_{e2} C_e}{Q_{0S} + Q_{R2} - WV_S} \]

A1.1.6.2- En estado no estacionario

\[V_S \frac{dC_S}{dt} = A + BC_S \]

Donde:

\[A = Q_{CC} C_S + Q_{PS} \]

\[B = WV_N - Q_{0S} - Q_{R2} \]
Separando variables e integrando resulta:

\[\int_{C_{S_0}}^{C_S} \frac{dC_S}{A + BC_S} = \int_{t_0}^{t} \frac{dt}{V_S} \]

Resolviendo la integral:

\[\frac{\ln(A + BC_S) - \ln(A + BC_{S_0})}{B} = \frac{t - t_0}{V_S} \]

De lo que resulta:

\[\frac{A + BC_S}{A + BC_{S_0}} = \exp \left(\frac{B(t - t_0)}{V_S} \right) \]
A1.1.6 Canal

Las ecuaciones para el canal son las siguientes:

A1.1.6.1- En estado estacionario

Balance de materia al agua:

\[Q_b = Q_c + Q_{VC} \]

Balance de materia a una sustancia cualquiera:

Puesto que estamos tomando el canal como un sistema que funciona en régimen de flujo en pistón, para realizar el balance debemos tomar un volumen diferencial del canal e integrar a lo largo de todo el canal:

\[Q_{Cl}C_{Cl} + Q_{PC}\frac{dl}{L} + W A_m dl C_{Cl} = Q_{Cl+dl}C_{Cl+dl} \]
El segundo término se desarrolla de la siguiente manera:

\[
\left(Q_{ci} - Q_{vc} \frac{dl}{L} \right) \left(C_{ci} + dC_{ci} \right)
\]

Que se desarrolla a su vez a:

\[
Q_{ci} C_{ci} + Q_{ci} dC_{ci} - Q_{vc} C_{ci} \frac{dl}{L} - \frac{Q_{vc}}{L} dldC_{ci}
\]

Por tanto:

\[
Q_{ci} C_{ci} + Q_{pc} \frac{dl}{L} + W_{A} dC_{ci} = Q_{ci} C_{ci} + Q_{ci} dC_{ci} - Q_{vc} C_{ci} \frac{dl}{L}
\]

Separando variables:

\[
\left(\frac{Q_{pc}}{L} + \frac{Q_{vc} C_{ci}}{L} + W_{A} C_{ci} \right) dl = Q_{ci} dC_{ci}
\]
Integrando:

\[\int_0^L \frac{dl}{Q_{Cl}} = \int_{C_{c0}}^{C_c} \frac{dC_{Cl}}{\left(\frac{Q_{PC}}{L} + \frac{Q_{VC}C_{Cl}}{L} + WA_M C_{Cl} \right)} \]

En el primer término de la ecuación debemos calcular \(Q_{Cl} \) en función de la longitud del canal:

\[Q_{Cl} = Q_b - \frac{l}{L} Q_{VC} \]

La solución de las integrales es la siguiente:

\[\frac{L}{Q_{VC}} \ln \left(\frac{Q_b}{Q_c} \right) = \frac{1}{Q_{VC} + WA_M} \ln \left(\frac{Q_{PC}}{L} + \left(\frac{Q_{VC}}{L} + WA_M \right) C_C \right) \]
La ecuación anterior no es válida bajo ciertas condiciones. Si \(Q_{VC} = 0 \), entonces el primer término se integra a:

\[
\frac{L}{Q_{b}}
\]

Si \(\left(\frac{Q_{RC}}{L} + W_{AM} \right) = 0 \), entonces el término a la derecha de la igualdad es:

\[
\frac{L}{Q_{PC}} \left(C_{C} - C_{N} \right)
\]

A1.1.7.2- En estado no estacionario

No es necesario hacer un desarrollo de las ecuaciones para estado no estacionario para el caso del canal. Puesto que cada elemento no tiene mezcla con los elementos adyacentes, los cambios debidos a variaciones de concentración en el agua del lago norte no afectan en un punto determinado del canal hasta que el caudal de
agua con esos cambios en la concentración ha avanzado hasta ese punto.

Por tanto, al realizar los cálculos para un punto determinado del canal deberá tomarse como datos aquellos que correspondan a un punto en el tiempo resultante de restar del momento actual la siguiente cantidad:

\[
\frac{V_C \cdot l}{\left(Q_b - \frac{l}{L} \cdot Q_{VC} \right) \cdot L}
\]
A1.2- Modelos biológicos

Conocer el comportamiento de los organismos de los lagos, especialmente su crecimiento, es especialmente importante al abordar el problema propuesto. Su importancia radica en que los mecanismos implicados en el proceso de degradación de los lagos implica una sobreabundancia de microorganismos.

Nos interesa especialmente comprender cómo se reproducen las algas del lago y qué factores influyen en éste crecimiento.

A1.2.1- Crecimiento de algas y bacterias

Según el modelo de Monod, la constante depende de la relación entre la concentración de sustrato y una constante, llamada constante de afinidad, que depende de cada especie, de la siguiente forma:

$$ W = W_{\text{max}} \frac{S}{K_S + S} $$
Donde K_S es la constante de afinidad y S es la concentración de sustrato. W_{max} es la velocidad máxima de crecimiento de las bacterias. Si K_S es muy pequeño en relación con S, puede verse que la velocidad de crecimiento tiende a ser igual a la máxima. En nuestro caso, y para la gran mayoría de las bacterias, K_S es mucho mayor que las concentraciones de nutrientes que podemos esperar razonablemente, por lo que la velocidad de crecimiento será constante. La siguiente tabla contiene los valores de K_S de algunas especies de algas para el elemento fósforo; compárese con el valor de 3,8 mg/l de concentración de fósforo contenido en el agua. En principio, el cálculo es por tanto sencillo.
<table>
<thead>
<tr>
<th>Organismo</th>
<th>KS, mg Ph/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asterionella formosa</td>
<td>0,00004-0,0006</td>
</tr>
<tr>
<td>Chlamydomonas reinhardtii</td>
<td>0,00037</td>
</tr>
<tr>
<td>Cyclotella nana</td>
<td>0,0006</td>
</tr>
<tr>
<td>Fragillaria crotonensis</td>
<td>0,00106</td>
</tr>
<tr>
<td>Microcystis</td>
<td>0,00161</td>
</tr>
<tr>
<td>Ankistrodesmus falcatus</td>
<td>0,00395</td>
</tr>
<tr>
<td>Oscillatoria redekei</td>
<td>0,005-0,01</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>0,0122</td>
</tr>
</tbody>
</table>

Compárese éstos valores con la concentración de fósforo en los lagos. En principio, tratar de limitar la velocidad de crecimiento de los microorganismos mediante la depuración del agua procedente de la EDAR es extremadamente difícil.

Podemos usar la velocidad de crecimiento de las algas en el modelo hallado en el punto anterior para calcular la cantidad de productores primarios (plancton) que generará el lago y así estimar, por ejemplo, la cantidad de lodos que se generarán. Sin embargo, la velocidad de
crecimiento de las distintas especies es muy variada, por lo que éste cálculo se hace muy difícil.

Ligado a la velocidad de crecimiento de las algas está la posibilidad de controlar su crecimiento mediante renovación. Éste procedimiento se denomina lavado. Hacerlo requiere un tiempo de residencia del agua muy corto, del orden del tiempo que lleva a las algas duplicarse. Eso implicaría renovar la totalidad del agua de los lagos en períodos del orden de días u horas, lo cual no es posible en las condiciones actuales.

La población bacteriana de un cultivo, como el que pueda ser los lagos, sigue una curva con forma de S. Se produce al principio un crecimiento que aumenta exponencialmente hasta que se alcanza un límite, determinado normalmente por la disponibilidad de nutrientes. Puede verse la forma de la curva en el siguiente diagrama:
Puede esperarse que al llenar los lagos transcurra un período de tiempo, que dependerá de la velocidad de crecimiento de las algas, en los que el agua permanecerá transparente; a continuación el agua se volverá verde y turbia de forma brusca. La población máxima de algas o bacterias, y por tanto el grado de turbiedad, dependerá en su caso del factor que limita el crecimiento: puede ser la disponibilidad de nutrientes, la luz solar, la presencia de un agente químico, etc.

Por tanto, aunque una disminución de los nutrientes no disminuya la velocidad inicial de crecimiento,
sí puede limitar la cantidad máxima de algas, si los nutrientes contenidos en el agua son el factor limitante de la cantidad máxima de algas que pueden soportar los lagos.

Como se señaló anteriormente el principal obstáculo a un cálculo teórico de la producción primaria en los lagos estriba en la complejidad del ecosistema que se genera, ecosistema que además nos es desconocido. Las comunidades de microorganismos no son ni se comportan de forma homogénea ni en el espacio ni en el tiempo, dependiendo de factores como temperatura, competición, disponibilidad de nutrientes, depredación, etc.

Existen a pesar de ello correlaciones en la bibliografía que relacionan las variables de interés en éste estudio. Dichas ecuaciones, sin embargo, son aplicables a lagos naturales de características muy distintas a los de los del parque, por lo que son escasamente aplicables. Sin embargo podemos emplear la regla de que un lago soportará condiciones eutróficas a partir de una carga de fósforo de 10 g por m² y año, y condiciones extremas
(cuando la proliferación de algas sea tan elevada que la luz solar sea el factor limitante para su crecimiento) a partir de valores de 20 g de fósforo por m² y año, ya que dicha regla sólo depende de la superficie del lago.

Con el reciente llenado del lago norte se ha tenido la oportunidad de contrastar la teoría con la práctica. Se ha observado como se esperaba que el agua permanece clara durante un plazo de más de un mes, seguido de un rápido incremento de la turbiedad que se estabilizó en el espacio de pocos días. Esto implica que el período de duplicación de las algas es de días, no de horas, pero aún así demasiado corto como para que puedan ser controladas únicamente mediante renovación del agua.

Sin embargo, la turbiedad y aspecto del agua es mucho mejor que al final del período anterior, por lo que se comprueba que el responsable de la mala calidad del agua no es en sí la simple presencia de algas, sino los procesos asociados de desoxigenación y producción de lodos.
A1.2.2- Analogía con sistemas de lagunaje

El comportamiento biológico de los lagos puede asemejarse de forma más satisfactoria a su análogo más cercano, en términos de suelo, profundidad y composición de la alimentación, que es un sistema de lagunaje.

Los sistemas de lagunaje son técnicas de depuración, pensadas para el tratamiento de caudales de relativo pequeño tamaño de aguas residuales urbanas. Entre sus ventajas está su bajo coste, nulo consumo energético y facilidad de mantenimiento. Sin embargo, ocupan grandes extensiones de terreno y no depuran bien cargas de contaminantes metálicos, por lo que están contraindicadas para tratar efluentes de procedencia industrial.

Existen ecuaciones de diseño para sistemas de lagunaje, aunque sólo para relacionar la disminución de la demanda biológica de oxígeno (DBO) con la superficie de la laguna, por lo que no son de utilidad para el problema que nos ocupa.
En los sistemas de lagunaje pueden emplearse tres tipos de estanques distintos; estanques anaerobios, lagunas facultativas y estanques de maduración; su clasificación estriba principalmente en su profundidad y del contenido en oxígeno del agua.

La profundidad de los lagos Norte y Sur los haría funcionar en condiciones normales como lagunas facultativas. Las lagunas facultativas tienen profundidades a partir de 1 m, y se diseñan para disminuir la DBO del agua, una vez ésta ha sido reducida si es necesario en los estanques anaerobios, ya que no pueden tratar agua con una carga orgánica superior a los 300 mg/l de DBO; también realizan una reducción parcial de los nutrientes. Basan su funcionamiento en la formación de una comunidad simbiótica de una población de algas que medra en las capas superiores del estanque y aportan oxigenación, y una colonia de bacterias anaerobias y facultativas que descomponen y mineralizan la materia orgánica.
Un tercer paso que puede emplearse en sistemas de lagunaje es el empleo de una laguna de maduración, diseñada para la eliminación de microorganismos patógenos. Una laguna de maduración puede llegar a eliminar un 99% de dichas bacterias, dado que el estanque se mantienen constantemente en condiciones agresivas para los patógenos: altamente aireada por la acción de las algas, y expuesta al sol. Sin embargo, las profundidades de las lagunas de maduración no suelen superar el metro.

En las lagunas facultativas ocurren ocasionalmente los mismos fenómenos que en los lagos se consideran indeseables: malos olores, formación de agregados flotantes de algas, aguas turbias, y producción elevada de lodos. Es en las lagunas de maduración donde el agua tiene una calidad que la hace apta para uso estético. Su tonalidad sigue siendo verdosa, aunque significativamente menor que en las lagunas facultativas, debido a que sigue habiendo una alta cantidad de nutrientes en el agua. Sin embargo, la total oxigenación del agua ocasiona una mucho menor producción de lodos y la no generación de malos olores.
Para mejorar la calidad del agua de los lagos debemos pues tratar de asemejar las condiciones imperantes en el parque a aquellas que se dan en una laguna de maduración.

Las características de total aireación se comparten entre lagunas de maduración y lagunas oligotróficas; en ambos casos se caracterizan por la presencia de oxígeno en las capas de agua en contacto con el fondo. La conclusión, tal como se llegó anteriormente, es que tanto una reducción de los nutrientes como una buena aireación son factores que conducen a evitar la aparición de los síntomas indeseables de la eutrofización, por lo que las actuaciones que se lleven a cabo deberán incluir mecanismos de reducción de nutrientes y de oxigenación del agua.
A1.2.3- Ciclo del fósforo

De especial interés son las transformaciones de los compuestos del fósforo en el medio acuático, para poder hallar métodos por el que pueda ser eliminado del medio. El fósforo es un elemento vital que interviene en los procesos energéticos de las células, interviene en la fotosíntesis y es un componente de los ácidos nucleicos.

El fósforo se libera de las rocas fosfatadas por disolución, de donde pasa al suelo o a las aguas continentales. De ahí pasa a la cadena trófica al ser absorbido por el fitoplancton, pasando el fósforo de presas a depredadores.

El fósforo contenido en cadáveres puede ser puesto en circulación mediante descomposición bacteriana, o puede pasar de nuevo a rocas fosfatadas por fosilización.

Los compuestos que forma el fósforo en el medio natural son los siguientes:
MgHPO$_4$ (fosfato de magnesio)
HPO$_4^{2-}$ (ortofosfato)
NaHPO$_4^-$ (Hidrógeno Fosfato de sodio)
CaPO$_4^-$ (Fosfato de calcio)
MgPO$_4^-$ (Fosfato de magnesio)
H$_2$PO$_4^-$ (Ácido fosfórico)
MgH$_2$PO$_4^{+}$ (Fosfato ácido de magnesio)
NaH$_2$PO$_4$ (Fosfato ácido de sodio)
CaH$_2$PO$_4$ (Fosfato ácido de calcio)
PO$_4^{3-}$ (Ión fosfato)
NaPO$_4^{2-}$ (fósforo sódico)

Ninguna de éstas especies tiene un intercambio apreciable con la atmósfera. Eso quiere decir que es inevitable un incremento del fósforo disponible en los lagos si no se renueva el agua, puesto que no tiene mecanismo alguno por el que pueda salir. Sin salida, cualquier esfuerzo de depuración previa es inútil a corto plazo simplemente debido a la acumulación por evaporación.

El otro nutriente de parecida importancia, el nitrógeno, puede ser obtenido de la atmósfera mediante
bacterias fijadoras y puede transformarse en especies gaseosas que pueden escapar de los lagos. Esto acentúa la importancia del fósforo como nutriente limitante.
Mediante el empleo del modelo hidráulico obtenido anteriormente se hallan los valores necesarios para determinar las intervenciones que se deben realizar en los lagos para garantizar la calidad del agua. Éstos valores son:

La cantidad de agua necesaria para garantizar una renovación correcta del agua. Se demuestra que una salida de agua de 3000 m3/día es suficiente para renovar adecuadamente el agua.

La localización de las entradas y salidas de agua. El resultado del cálculo es que la salida de agua debe colocarse en el lago sur.

La importancia que pueda tener un incremento brusco de la concentración de un contaminante en el agua de entrada, es decir la inercia del sistema. El resultado
refleja que el sistema es resistente a cambios bruscos y no son precisas precauciones especiales en éste sentido.

La necesidad de depuración en terciario de los nutrientes en el agua que entra a los lagos. Se llega a la conclusión de que es deseada una entrada de 1 mg/l o menos en el agua procedente del terciario de la urbanización.

A2.1- Cálculo de la concentración por evaporación

Se trata de calcular la concentración de una sustancia cualquiera en todas las partes del sistema de los lagos respecto de su entrada en el agua procedente de la EDAR, supuesto que no hay generación o consumo y que no hay intercambio con la atmósfera o generación.

Éste cálculo es útil para determinar qué renovación de las aguas será necesaria para evitar problemas de concentración por evaporación.
Se emplearán los siguientes datos, tomados del funcionamiento del lago en las condiciones actuales y de los caudales mínimos que serán necesarios para el riego de Costa Ballena Chipiona. Eso corresponde a la salida mínima en las peores condiciones; si el resultado obtenido es lo bastante bueno, se deduce que la misma salida no dejará de ofrecer mejores resultados en meses con menor evaporación, como por ejemplo en invierno, cuando los caudales evaporados son sensiblemente menores e incluso puede haber un aporte neto de agua a los lagos.

Caudal de salida de agua: 3.000 m3/día, procedente del lago sur

Caudal de agua bombeado desde el lago sur al norte: 3.600 m3/día. Se ha tomado éste valor como aproximadamente la mitad del caudal proporcionado por la estación de bombeo, ya que parte de éste caudal se devuelve al lago sur, sin influir por tanto en la concentración.
Caudal de agua bombeado del lago norte al borbotón: 3.000 m³/día, aproximadamente lo correspondiente a 8 horas de funcionamiento del borbotón.

Concentración en el agua de entrada: 100 (unidades arbitrarias)

Constante de velocidad de la reacción: 0

Caudal de entrada por fuentes difusas: 0

Caudales de evaporación: Los caudales de evaporación corresponden a las condiciones más severas, es decir, a los meses de Junio-Julio, cuando se experimenta una evaporación más elevada y se alcanzan los 160 mm de déficit hídrico de media. Multiplicando ésta cantidad por la superficie de lagos y canal:

\[
\begin{align*}
Q_{VB} &= 7 \text{ m}^3/\text{día} \\
Q_{VN} &= 108 \text{ m}^3/\text{día} \\
Q_{VC} &= 70 \text{ m}^3/\text{día} \\
Q_{VS} &= 136 \text{ m}^3/\text{día}
\end{align*}
\]
No existe entrada de agua procedente de la EDAR al lago sur.

A2.1.1- Cálculo del incremento de concentración

manteniendo los caudales de recirculación actuales

Balances de materia al agua:

\[Q_{R1} = Q_{VB} + Q_a \]

\[Q_a + Q_{e1} + Q_{R2} = Q_{R1} + Q_{VN} + Q_B + Q_{0N} \]

\[Q_b = Q_c + Q_{ve} \]

\[Q_c = Q_{R2} + Q_{VS} + Q_{0S} \]

Sustituyendo los datos conocidos:

\[3000 = 7 + Q_a \]

\[Q_a + Q_{e1} + 3600 = 3000 + 108 + Q_B + 0 \]

\[Q_b = Q_c + 70 \]
\[Q_c = 3600 + 136 + 3000 \]

Por lo que:

\[Q_c = 6736 \, \text{m}^3 / \text{día} \]

\[Q_b = 6806 \, \text{m}^3 / \text{día} \]

\[Q_a = 2993 \, \text{m}^3 / \text{día} \]

\[Q_{e1} = 3321 \, \text{m}^3 / \text{día} \]

Balance de materia a una sustancia C. Las ecuaciones son:

\[C_B = \frac{Q_{R1}C_N + Q_{PB}}{WV_B + Q_a} \]

\[C_N = \frac{Q_{R2}C_S + Q_aC_B + Q_{PN} + Q_{e1}C_e}{Q_{0N} + Q_b + Q_{R1} - WV_N} \]

\[C_S = \frac{Q_CC_C + Q_{PS} + Q_{e2}C_e}{Q_{0S} + Q_{R2} - WV_S} \]
\[
\frac{L}{Q_{VC}} \ln \left(\frac{Q_b}{Q_c} \right) = \frac{1}{\frac{Q_{VC}}{L} + WA_M} \ln \left(\frac{Q_{PC}}{L} + \left(\frac{Q_{VC}}{L} + WA_M \right) C_C \right) \left(\frac{Q_{PC}}{L} + \left(\frac{Q_{VC}}{L} + WA_M \right) C_N \right)
\]

Sustituyendo los datos conocidos:

\[
C_B = \frac{3000C_N + 0}{0 + 2993}
\]

\[
C_N = \frac{3600C_S + 2993C_B + 0 + 3321 \cdot 100}{0 + 6806 + 3000 - 0}
\]

\[
C_S = \frac{6736C_C + 0 + 0}{3000 + 3600 - 0}
\]

\[
\frac{L}{70} \ln \left(\frac{6806}{6736} \right) = \frac{1}{\frac{70}{L} + 0} \ln \left(\frac{0 + \left(\frac{70}{L} + 0 \right) C_C}{0 + \left(\frac{70}{L} + 0 \right) C_N} \right)
\]

De donde se obtiene:

\[
C_B = 1,002C_N
\]

\[
C_c = 1,01C_N
\]
\[C_S = 1,02C_N \]

\[C_N = \frac{3672C_N + 3000C_N + 332100}{9806} \]

Por lo que:

\[C_N = 106 \]

\[C_B = 106,2 \]

\[C_C = 107.6 \]

\[C_S = 108,2 \]

Advertimos que el máximo incremento de concentración que se produce es de un 8,2%, que se da en el lago sur. Se estima que éste incremento es muy pequeño y se concluye que incluso en verano el mínimo régimen previsto de agua de riego (3000 m3/día) es suficiente como para que no se produzcan acumulaciones importantes en los lagos debidas a la evaporación.
A2.1.2- Incremento de la concentración con caudales de recirculación reducidos.

Puede observarse en el caso anterior que el bombeo desde el lago sur al norte, y el bombeo al borbotón son muy grandes, y consideramos que pueden ser innecesarios. Para comprobarlo eliminamos el bombeo desde el lago sur al norte, y bajamos el caudal bombeado al borbotón a un caudal de sólo 100 m3/día

En éste caso las ecuaciones empleadas son las mismas que en el punto de arriba y sólo es necesario cambiar los nuevos datos. En éste caso:

\[100 = 7 + Q_a \]
\[Q_a + Q_{c1} = 100 + 108 + Q_B + 0 \]
\[Q_b = Q_c + 70 \]
\[Q_c = 136 + 3000 \]
Por lo que:

\[Q_c = 3136 \text{ m}^3 / \text{día} \]
\[Q_b = 3206 \text{ m}^3 / \text{día} \]
\[Q_a = 93 \text{ m}^3 / \text{día} \]
\[Q_{el} = 3321 \text{ m}^3 / \text{día} \]

Para los valores de las concentraciones, sin más preámbulos:

\[C_B = \frac{100C_N}{93} \]
\[C_N = \frac{93C_B + 3321 \cdot 100}{3206} \]
\[C_S = \frac{3136C_C}{3000} \]

\[\frac{L}{70} \ln \left(\frac{3206}{3136} \right) = \frac{1}{70} \ln \left(\frac{0}{L} + \frac{70}{L} + 0 \right) C_C + \frac{0}{L} + \frac{70}{L} + 0 \right) C_N \]
Y por tanto:

\[C_N = 107 \]
\[C_B = 115 \]
\[C_C = 109 \]
\[C_S = 114 \]

Aunque se aprecia un incremento en la concentración de las zonas con menor mezcla de aguas, o aquellas que el agua tarda más en alcanzar – el lago sur y el borbotón – el beneficio que supone no justifica el gasto energético del bombeo de miles de metros cúbicos diarios cuando la simple renovación que supone la extracción del agua para riego impide por sí sola incrementos de la concentración por evaporación más allá de un 15% respecto al agua de entrada.
A2.1.3- Valores de concentraciones para una salida de agua colocada en el lago norte

Si la salida de agua para riego se colocara en el lago norte, el procedimiento de cálculo es el mismo; los datos varían de la siguiente forma:

\[Q_{0N} = 3000 \]
\[Q_{0S} = 0 \]

También tomaremos caudales de recirculación reducidos, con un bombeo del lago sur al norte de 200 m³ diarios y un bombeo al borbotón de 100 m³ diarios.

La razón de proponer éstos caudales de recirculación ficticios y artificialmente bajos es que consideramos que si la opción de obtener agua del lago norte para riego requiere de caudales de recirculación elevados para mantener la calidad del agua, entonces es económicamente inferior a la opción de tomar el agua del lago sur. Además, las ventajas o desventajas de la toma de
aguas del lago norte serán más evidentes sin la presencia
de una recirculación que puede enmascarar los efectos del
cambio de localización de la toma de aguas.

Por tanto:

\[
\begin{align*}
100 &= 7 + Q_a \\
Q_a + Q_{e1} + 200 &= 100 + 108 + Q_b + 3000 \\
Q_b &= Q_c + 70 \\
Q_c &= 200 + 136 + 0
\end{align*}
\]

Resolviendo el sistema de ecuaciones:

\[
\begin{align*}
Q_a &= 93 \\
Q_{e1} &= 3321 \\
Q_b &= 406 \\
Q_c &= 336
\end{align*}
\]
Con los valores de caudales podemos calcular las concentraciones:

\[C_b = \frac{100C_N + 0}{93} \]
\[C_N = \frac{200C_S + 93 \frac{100C_N}{93} + 0 + 3321 \cdot 100}{3000 + 406 + 100 + 0} \]
\[C_S = \frac{336C_C + 0 + 0}{0 + 200} \]
\[\frac{L}{70} \ln \left[\frac{406}{336} \right] = \frac{1}{70} \ln \left[\frac{0 + \left(\frac{70}{L} + 0 \right) C_C}{0 + \left(\frac{70}{L} + 0 \right) C_N} \right] \]

Resolviendo el sistema de ecuaciones:

\[C_N = 110,7 \]
\[C_B = 119 \]
\[C_C = 186 \]
\[C_S = 224,7 \]

Se desprende de éstos cálculos que es mucho más conveniente colocar la entrada de aguas en el lago
norte y la salida en el lago sur, ya que el aumento de la concentración en el lago sur es mucho mayor (relacionado con el menor caudal bombeado, comparado con aquel que se va a usar para riego)

A2.2- Respuesta del sistema a un aumento repentino en la concentración del agua procedente de la EDAR

Dado que la estabilidad del sistema y la calidad de las aguas depende de las características del agua de entrada, un fallo en la depuración podría tener consecuencias graves en la cantidad total de algún contaminante. Dichas consecuencias dependerán de la inercia del sistema: la velocidad de la respuesta a perturbaciones externas. Con el modelo hidráulico podemos calcular la respuesta del sistema a varios eventos.

Supondremos que, en las mismas condiciones que en el supuesto anterior, la concentración del contaminante en el agua procedente de la EDAR aumenta en un 500%, eligiendo éste valor dado que la depuración recomendada
en el Real decreto 509/1996 dicta una reducción mínima del 80%, lo que corresponde al incremento de la concentración en el agua de entrada indicado en caso de fallo en la depuración.

Empleando la ecuación de concentración respecto al tiempo para el lago norte:

\[
\frac{A + BC_N}{A + BC_{N0}} = \exp\left(\frac{B(t - t_0)}{V_N}\right)
\]

Donde:

\[
A = Q_{R2}C_S + Q_aC_B + Q_{PN} + Q_{e1}C_e
\]

\[
B = WV_N - Q_{0N} - Q_b - Q_{R1}
\]

En éste caso:

\[
A = 200 \cdot 110 + 93 \cdot 111.8 + 0 + 3221 \cdot 500 = 1642897
\]
Y

\[B = 0 - 0 - 3406 - 100 = -3506 \]

Por lo que:

\[
\frac{1642897 - 3506C_N}{1642897 - 3506 \cdot 104} = \exp\left(\frac{-3506 \cdot t}{29800}\right)
\]

De donde se obtiene:

\[C = -\frac{\exp(-0.22238 \cdot t) \cdot 1278273 - 1642897}{3506} \]

El tiempo debe introducirse en días. En la siguiente tabla y gráfico se expresa la variación de la concentración respecto del tiempo para un período de dos días. Nótese que incluso con un cambio tan brusco de la concentración del agua de entrada se tarda alrededor de 33 horas en duplicar la concentración del lago, mientras que para fallos más cortos en el tiempo, de 8 o 12 horas, se experimentan incrementos de concentración más modestos, de entre un 25 y un 33%.
<table>
<thead>
<tr>
<th>Horas</th>
<th>Concentración</th>
<th>Incremento respecto al estado normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>117,265781</td>
<td>+13%</td>
</tr>
<tr>
<td>8</td>
<td>130,048889</td>
<td>+25%</td>
</tr>
<tr>
<td>12</td>
<td>142,366884</td>
<td>+37%</td>
</tr>
<tr>
<td>16</td>
<td>154,23669</td>
<td>+48%</td>
</tr>
<tr>
<td>24</td>
<td>176,696372</td>
<td>+70%</td>
</tr>
<tr>
<td>36</td>
<td>207,413324</td>
<td>+100%</td>
</tr>
<tr>
<td>48</td>
<td>234,897892</td>
<td>+126%</td>
</tr>
</tbody>
</table>

Los datos anteriores se reflejan en la siguiente gráfica:
A3.3- Cálculo de cargas de nutriente por unidad de superficie de los lagos.

Supondremos un caudal de entrada constante en el tiempo de 3000 m3/día, que supondremos típica para el uso que se pretende dar a los lagos.

La superficie de los lagos es de 55000 m2 aproximadamente. La fórmula a emplear será por tanto:

\[
CFA = \frac{3000 \frac{m^3}{día} \cdot 365 \frac{día}{año} \cdot 1000 \frac{l}{m^3} \cdot X \frac{mg}{l} \cdot \frac{1g}{1000mg}}{55000m^2}
\]
Para valores de concentración a partir de 3,8 mg/l
(valor actual):

<table>
<thead>
<tr>
<th>Concentración de fósforo en el agua de entrada (mg/l)</th>
<th>Carga de fósforo anual (g/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,8</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>1,6</td>
<td>32</td>
</tr>
<tr>
<td>1,2</td>
<td>24</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>0,8</td>
<td>16</td>
</tr>
<tr>
<td>0,6</td>
<td>12</td>
</tr>
<tr>
<td>0,4</td>
<td>8</td>
</tr>
<tr>
<td>0,2</td>
<td>4</td>
</tr>
</tbody>
</table>
En la bibliografía se recogen los siguientes valores:

0,1-1 : Valores normales para lagos no eutróficos.

>10 : Valores para lagos eutróficos.

>20 : La cantidad de nutrientes es tal que el crecimiento de las algas está limitado por la cantidad de luz solar disponible.

Se ve por tanto que es conveniente disminuir la concentración por debajo de 1 mg/l para empezar a controlar el problema de la proliferación de algas.

Debe evitarse el error de pensar que la disminución de algas en el agua será proporcional a la depuración, es decir, que si con una entrada de 1 mg/l la cantidad de algas es de un 100%, con una entrada de 0.8 ésta será de un 80%, dado que la dependencia de éstas dos variables no puede predecirse a priori. También debe tenerse en cuenta que ésta reducción no supondrá una reducción en la velocidad de crecimiento de las algas, sino en su población máxima.
ANEXO 3 : ANÁLISIS

Los siguientes datos proceden de análisis del agua de lagos y agua procedente del tratamiento terciario de la urbanización en el período anterior al vaciado del lago norte.

<table>
<thead>
<tr>
<th></th>
<th>Agua EDAR</th>
<th>Agua lagos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amonio mg/l</td>
<td>0</td>
<td>0,3</td>
</tr>
<tr>
<td>Conductividad uS/cm</td>
<td>1300</td>
<td>2350</td>
</tr>
<tr>
<td>Nitratos mg/l</td>
<td>0,7</td>
<td>0,2</td>
</tr>
<tr>
<td>pH</td>
<td>7,64</td>
<td>9,77</td>
</tr>
<tr>
<td>DBO mgO2/l</td>
<td>8</td>
<td>29</td>
</tr>
<tr>
<td>DQO mgO2/l</td>
<td>21</td>
<td>69</td>
</tr>
<tr>
<td>Sólidos en suspensión mg/l</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>Fósforo total mg/l</td>
<td>3,8</td>
<td>1,1</td>
</tr>
<tr>
<td>Coliformes totales UFC/100 ml</td>
<td>16500</td>
<td>0</td>
</tr>
<tr>
<td>Enreococos UFC/100 ml</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Coliformes fecales UFC/100 ml</td>
<td>4700</td>
<td>0</td>
</tr>
<tr>
<td>Aerobios totales UFC/ml</td>
<td>3650</td>
<td>115</td>
</tr>
</tbody>
</table>
ANEXO 4 : LEGISLACIÓN

A4.1: Anexo I del Real Decreto 509/1996. Requisitos de los vertidos de aguas residuales

Cuadro 1

Requisitos para los vertidos procedentes de instalaciones de tratamiento de aguas residuales urbanas.

Se aplicará el valor de concentración o el porcentaje de reducción.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Concentración</th>
<th>Porcentaje mínimo de reducción (1)</th>
<th>Método de medida de referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda bioquímica de oxígeno (DBO 5 a 20 °C) sin nitrificación (2)</td>
<td>25 mg/l O2</td>
<td>70-90. 40 de conformidad con el apartado 3 del artículo 5 R.D.-ley (3)</td>
<td>Muestra homogeneizada, sin filtrar ni decantar. Determinación del oxígeno disuelto antes y después de cinco días de incubación a 20 ° C ± 1 °C, en completa oscuridad. Aplicación de un inhibidor de la nitrificación.</td>
</tr>
<tr>
<td>Demanda química de oxígeno</td>
<td>125 mg/l O2</td>
<td>75</td>
<td>Muestra homogeneizada, sin filtrar ni decantar. Dicromato potásico.</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>Total de sólidos en suspensión</td>
<td>35 mg/l (4). 35 de conformidad con el apartado 3 del art. 5 R.D-I (más de 10.000 h-e) (3). 60 de conformidad con el apartado 3 del art. 5 R.D-I (de 2.000 a 10.000 h-e) (3)</td>
<td>90 (4). 90 de conformidad con el apartado 3 del art. 5 R.D-I (más de 10.000 h-e) (3). 70 de conformidad con el apartado 3 del art. 5 R.D-I (de 2.000 a 10.000 h-e) (3)</td>
<td>Filtración de una muestra representativa a través de una membrana de filtración de 0,45 micras. Secado a 105 °C y pesaje. Centrifugación de una muestra representativa (durante cinco minutos como mínimo, con una aceleración media de 2.800 a 3.200 g), secado a 105 °C y pesaje.</td>
</tr>
</tbody>
</table>

(1) Reducción relacionada con la carga del caudal de entrada.

(2) Este parámetro puede sustituirse por otro: carbono orgánico total (COT) o demanda total de oxígeno
(DTO), si puede establecerse una correlación entre DBO 5 y el parámetro sustituto.

(3) Se refiere a los supuestos en regiones consideradas de alta montaña contemplada en el apartado 3 del artículo 5 del Real Decreto-ley 11/1995, de 28 de diciembre.

(4) Este requisito es optativo.

Los análisis de vertidos procedentes de sistemas de depuración por lagunaje se llevarán a cabo sobre muestras filtradas; no obstante, la concentración de sólidos totales en suspensión en las muestras de aguas sin filtrar no deberá superar los 150 mg/l.
Cuadro 2

Requisitos de los vertidos procedentes de instalaciones de tratamiento de aguas residuales urbanas realizados en zonas sensibles cuyas aguas sean eutróficas o tengan tendencia a serlo en un futuro próximo. Según la situación local, se podrá aplicar uno o los dos parámetros. Se aplicarán el valor de concentración o el porcentaje de reducción.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Concentración</th>
<th>Porcentaje mínimo de reducción (1)</th>
<th>Método de medida de referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fósforo total</td>
<td>2 mg/l P (de 10.000 a 100.000 h-e). 1 mg/l P (más de 100.000 h-e)</td>
<td>80</td>
<td>Espectrofotometría de absorción molecular.</td>
</tr>
<tr>
<td>Nitrógeno total (2)</td>
<td>15 mg/l N (de 10.000 a 100.000 h-e). (3) 10 mg/l N (más de 100.000 h-e) (3)</td>
<td>70-80</td>
<td>Espectrofotometría de absorción molecular.</td>
</tr>
</tbody>
</table>
(1) Reducción relacionada con la carga del caudal de entrada.

(2) Nitrógeno total equivalente a la suma del nitrógeno Kjeldahl total (N orgánico y amoniacal), nitrógeno en forma de nitrato y nitrógeno en forma de nitrito (NO).

(3) Estos valores de concentración constituyen medias anuales según el punto 3 del apartado A) del anexo III. No obstante los requisitos relativos al nitrógeno pueden comprobarse mediante medias diarias cuando se demuestre, de conformidad con el apartado A) 1 del anexo III, que se obtiene el mismo nivel de protección. En ese caso la media diaria no deberá superar los 20 mg/l N total para todas las muestras, cuando la temperatura del efluente del reactor biológico sea superior o igual a 12 °C. En sustitución del requisito relativo a la temperatura, se podrá aplicar una limitación del tiempo de funcionamiento que tenga en cuenta las condiciones climáticas regionales.
Métodos de referencia para el seguimiento y evaluación de resultados

A) Criterios generales

1. Se aplicará un método de control que corresponda al menos al nivel de los requisitos que se indican a continuación, teniendo en cuenta que no se computarán los valores extremos para la calidad del agua cuando éstos sean consecuencia de situaciones inusuales, como las ocasionadas por las lluvias intensas.

Podrán utilizarse métodos alternativos respecto a los indicados en el apartado B de este anexo, siempre que pueda demostrarse que se obtienen resultados equivalentes.

2. Se considerará que las aguas residuales tratadas se ajustan a los parámetros correspondientes cuando, para cada uno de los parámetros pertinentes, las muestras de dichas aguas indiquen que éstas respetan los valores paramétricos de que se trate, de la siguiente forma:
1.º El número máximo de muestras que pueden no cumplir los requisitos expresados en reducciones de porcentajes y/o concentraciones del cuadro 1 del anexo I de este Real Decreto y del tratamiento primario regulado en el artículo 2.g) del Real Decreto-lely, es el que se especifica en el apartado C) de este anexo III.

2.º Respecto de los parámetros del cuadro 1 del anexo I, expresados en concentración, las muestras no conformes tomadas en condiciones normales de funcionamiento no deberán desviarse de los valores paramétricos en más del 100 por 100. Por lo que se refiere a los valores paramétricos de concentración relativos al total de sólidos en suspensión, se podrán aceptar desviaciones de hasta un 150 por 100.

3.º Por lo que se refiere a los parámetros fijados en el cuadro 2 del anexo I, la media anual de las muestras deberá respetar los valores correspondientes para cada uno de los parámetros.
Métodos de referencia

1. Se tomarán muestras durante un período de veinticuatro horas, proporcionalmente al caudal o a intervalos regulares, en el mismo punto claramente definido de la salida de la instalación de tratamiento, y de ser necesario en su entrada, para vigilar el cumplimiento de los requisitos aplicables a los vertidos de aguas residuales.

Se aplicarán prácticas internacionales de laboratorio correctas con objeto de que se reduzca al mínimo el deterioro de las muestras en el período que media entre la recogida y el análisis.

2. El número mínimo anual de muestras se establecerá según el tamaño de la instalación de tratamiento y se recogerá a intervalos regulares durante el año:

 a) De 2.000 a 9.999 h-e: 12 muestras durante el primer año, cuatro muestras los siguientes años, siempre que pueda demostrarse que el agua del primer año cumple las disposiciones del presente Real Decreto; si una de las
cuatro muestras no resultara conforme, se tomarán 12 muestras el año siguiente.

b) De 10.000 a 49.999 h-e: 12 muestras.

c) De 50.000 h-e o más: 24 muestras.
Número máximo permitido de muestras no conformes en función de las series de muestras tomadas en un año

<table>
<thead>
<tr>
<th>Series de muestras tomadas en un año</th>
<th>Número máximo permitido de muestras no conformes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-7</td>
<td>1</td>
</tr>
<tr>
<td>8-16</td>
<td>2</td>
</tr>
<tr>
<td>17-28</td>
<td>3</td>
</tr>
<tr>
<td>29-40</td>
<td>4</td>
</tr>
<tr>
<td>41-53</td>
<td>5</td>
</tr>
<tr>
<td>54-67</td>
<td>6</td>
</tr>
<tr>
<td>68-81</td>
<td>7</td>
</tr>
<tr>
<td>82-95</td>
<td>8</td>
</tr>
<tr>
<td>96-110</td>
<td>9</td>
</tr>
<tr>
<td>111-125</td>
<td>10</td>
</tr>
<tr>
<td>126-140</td>
<td>11</td>
</tr>
<tr>
<td>141-155</td>
<td>12</td>
</tr>
<tr>
<td>156-171</td>
<td>13</td>
</tr>
<tr>
<td>172-187</td>
<td>14</td>
</tr>
<tr>
<td>188-203</td>
<td>15</td>
</tr>
<tr>
<td>204-219</td>
<td>16</td>
</tr>
<tr>
<td>220-235</td>
<td>17</td>
</tr>
<tr>
<td>Range</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>236-251</td>
<td>18</td>
</tr>
<tr>
<td>252-268</td>
<td>19</td>
</tr>
<tr>
<td>269-284</td>
<td>20</td>
</tr>
<tr>
<td>285-300</td>
<td>21</td>
</tr>
<tr>
<td>301-317</td>
<td>22</td>
</tr>
<tr>
<td>318-334</td>
<td>23</td>
</tr>
<tr>
<td>335-350</td>
<td>24</td>
</tr>
<tr>
<td>351-365</td>
<td>25</td>
</tr>
</tbody>
</table>
A4- PLANOS

01-00 LOCALIZACIÓN

01-01 EMPLAZAMIENTO

02-00 DISTRIBUCIÓN GENERAL EXISTENTE

03-00 PERFILES Y SECCIONES

04-00 ESTACIÓN Y FILTRACIÓN DE BOMBEO (I)

04-00 ESTACIÓN Y FILTRACIÓN DE BOMBEO (II)

05-00 DISTRIBUCIÓN DE AIREADORES

06-00 ALARGAMIENTO DE LA TUBERÍA NORTE
DOCUMENTO III: PLIEGO DE CONDICIONES
PLIEGO DE CLÁUSULAS ADMINISTRATIVAS PARTICULARES QUE HA DE REGIR EN EL CONTRATO DE OBRAS DE “PROPUESTAS DE MEJORA DE LA CALIDAD DEL AGUA EN LOS LAGOS DE COSTA BALLENA” A ADJUDICAR POR PROCEDIMIENTO NEGOCIADO SIN PUBLICIDAD

ÍNDICE

CAPÍTULO PRIMERO.- DISPOSICIONES GENERALES

Cláusula 1. Régimen jurídico.. 5
Cláusula 2. Capacidad para contratar................................. 6

Sección primera. Del contrato

Cláusula 3. Objeto del contrato .. 6
Cláusula 4. Presupuesto base de licitación y precio del contrato ... 7
Cláusula 5. Existencia de crédito.. 7
Cláusula 6. Procedimiento de adjudicación y solicitud de ofertas... 7
Cláusula 7. Aspectos del contrato objeto de negociación ... 8
Cláusula 8. Efectos de la propuesta de adjudicación 8
Cláusula 9. Adjudicación del contrato................................. 8
Cláusula 10. Perfección y formalización del contrato....... 10
Cláusula 11. Riesgo y ventura.. 10
Cláusula 12. Cesión del contrato.................................... 11
Cláusula 13. Subcontratación.. 11
Cláusula 14. Resolución del contrato 11
Sección segunda. De las garantías

Cláusula 15. Garantía provisional ... 12
Cláusula 16. Garantía definitiva ... 14
Cláusula 17. Devolución y cancelación de la garantía definitiva ... 16

Sección tercera. De las proposiciones

Cláusula 18. Presentación de proposiciones 17
Cláusula 19. Forma y contenido de las proposiciones 17
Cláusula 20. Calificación de la documentación presentada, valoración de los criterios de selección y apertura y examen de las proposiciones 23

CAPÍTULO II.- EJECUCIÓN DE LA OBRA

Sección primera. De la interpretación del proyecto y dirección de las obras

Cláusula 21. Interpretación del proyecto 24
Cláusula 22. Dirección de las obras 25

Sección segunda. De la comprobación del replanteo, Plan de Seguridad y Salud y programa de trabajo

Cláusula 23. Comprobación del replanteo 27
Cláusula 24. Plan de Seguridad y Salud 30
Cláusula 25. Programa de trabajo 30
Cláusula 26. Plazo de ejecución .. 31
Cláusula 27. Cumplimiento del plazo y penalidades por demora ... 32

Sección tercera. De la modificación y suspensión de las obras
Cláusula 28. Modificación de las obras 33
Cláusula 29. Suspensión de las obras 34

CAPÍTULO III.- DERECHOS Y OBLIGACIONES DEL
CONTRATISTA

Sección primera. De los abonos al contratista

Cláusula 30. Abonos, mediciones y valoración 34
Cláusula 31. Revisión de precios .. 37

Sección segundas. De las exigencias al contratista

Cláusula 32. Obligaciones, gastos e impuestos
exigibles al contratista .. 38

Sección tercera. De las disposiciones laborales y
 sociales

Cláusula 33. Obligaciones laborales y sociales..................... 40
Cláusula 34. Responsabilidad del contratista por
daños y perjuicios .. 40

CAPÍTULO IV.- EXTINCIÓN DEL CONTRATO

Sección primera. De la terminación de la obra

Cláusula 35. Aviso de terminación de la ejecución de
la obra ... 41
Cláusula 36. Recepción de la obra .. 41
Cláusula 37. Medición general y certificación final 42

Sección segunda. Del plazo de garantía y de la
liquidación
Cláusula 38. Plazo de garantía y liquidación..................... 43
Cláusula 39. Responsabilidad por vicios ocultos.............. 45

Sección tercera. Prerrogativas de la Administración y Tribunales competentes

Cláusula 40. Prerrogativas de la Administración y Tribunales competentes. ... 47
PLIEGO DE CLÁUSULAS ADMINISTRATIVAS PARTICULARES QUE HA DE REGIR EN EL CONTRATO DE OBRAS DE “PROPUESTAS DE MEJORA DE LA CALIDAD DEL AGUA EN LOS LAGOS DE COSTA BALLENA” A ADJUDICAR POR PROCEDIMIENTO NEGOCIADO SIN PUBLICIDAD

CAPÍTULO PRIMERO
DISPOSICIONES GENERALES

Cláusula 1. Régimen jurídico.

El presente contrato tiene carácter administrativo. Las partes quedan sometidas expresamente a lo establecido en este pliego.

Para lo no previsto en los pliegos, el contrato se regirá por la legislación básica del Estado en materia de contratos de las Administraciones Públicas: Ley de Contratos de las Administraciones Públicas, Texto Refundido aprobado por Real Decreto Legislativo 2/2000, de 16 de junio, (LCAP), y el Reglamento General de la Ley de Contratos de las Administraciones Públicas, aprobado por Real Decreto 1098/2001, de 12 de Octubre (RGLCAP), y por el Pliego de Cláusulas Administrativas Generales para la Contratación de obras del Estado, aprobado por Decreto 3854/1970, de 31 de diciembre, en cuanto no se oponga a lo establecido en la LCAP y en el RGLCAP. Supletoriamente, se aplicarán las normas estatales sobre contratos públicos que no tengan carácter básico, las restantes normas de derecho administrativo y, en su defecto, la de derecho privado.
Para las obras cuyo objeto consista en una edificación será de aplicación, con carácter supletorio, la Ley 38/1999, de 5 de noviembre, de Ordenación de la Edificación, a excepción de lo dispuesto sobre garantías de suscripción obligatoria.

Cláusula 2. Capacidad para contratar.

Podrán optar a la adjudicación del presente contrato las personas naturales o jurídicas, españolas o extranjeras, a título individual o en unión temporal que tengan plena capacidad de obrar, que no se encuentren incursas en prohibiciones e incompatibilidades para contratar con la Administración establecidas en el artículo 20 de la LCAP, y que acrediten su solvencia económica, financiera y técnica, requisito éste último que será sustituido por la correspondiente clasificación en los casos en los que con arreglo a lo establecido en la LCAP, sea exigible, de conformidad con lo establecido en el apartado 12 del Anexo I al presente pliego, sin perjuicio de lo establecido en el artículo 15.3 de la LCAP.

Las empresas extranjeras no comunitarias, deberán reunir además, los requisitos establecidos en el artículo 23 de la LCAP.

Sección primera. Del contrato.

Cláusula 3. Objeto del contrato.

El objeto del contrato al que se refiere el presente pliego, es la ejecución de las obras descritas en el apartado 1 de su Anexo I, según el proyecto
aprobado por la Administración, que recoge todas las necesidades administrativas a satisfacer mediante el contrato y los factores de todo orden a tener en cuenta. Dicho proyecto, según resulta de la resolución de su aprobación, consta de cuantos documentos son exigidos en el artículo 124 de la LCAP habiéndose contemplado en su elaboración lo preceptuado en el Libro II, Título I, Capítulo II, Sección 2ª de su Reglamento.

La Memoria, los planos, los cuadros de precios, el pliego de prescripciones técnicas particulares y el pliego de cláusulas administrativas particulares, revestirán carácter contractual, por lo que deberán ser firmados, en prueba de conformidad por el adjudicatario, en el mismo acto de formalización del contrato.

Cláusula 4. Presupuesto base de licitación y precio del contrato.

El presupuesto base de licitación consignado en el proyecto asciende a la cantidad expresada en documento de presupuestos del presente volumen.

Cláusula 5. Existencia de crédito.

La ejecución de las obras está amparada por los créditos que se indican en el apartado 4 del Anexo I al presente pliego.

Cláusula 6. Procedimiento de adjudicación y solicitud de ofertas.

El contrato se adjudicará por procedimiento negociado sin publicidad en aplicación de los
artículos 73.4, 75.1 y 141 de la LCAP, conforme a los términos y requisitos establecidos en dicha ley.

Cláusula 7. Aspectos del contrato objeto de negociación.

En el presente procedimiento serán objeto de negociación los aspectos económicos y técnicos que se señalan en el apartado 16 del Anexo I al presente pliego.

Cláusula 8. Efectos de la propuesta de adjudicación.

La propuesta de adjudicación de la Mesa de contratación, en su caso, no crea derecho alguno en favor del empresario propuesto, que no los adquirirá, respecto a la Administración, mientras no se le haya adjudicado el contrato por acuerdo del órgano de contratación.

Cláusula 9. Adjudicación del contrato.

El empresario propuesto como adjudicatario deberá acreditar ante el órgano de contratación, previamente a la adjudicación, hallarse al corriente en el cumplimiento de las obligaciones tributarias y con la Seguridad Social, a cuyo efecto se le otorgará un plazo de cinco días hábiles. Dicha acreditación se efectuará de acuerdo con lo siguiente:

Obligaciones tributarias:

a) Original o copia compulsada del alta en el Impuesto sobre Actividades Económicas en el epígrafe correspondiente al objeto del contrato, siempre que ejerza actividades sujetas a dicho
impuesto, en relación con las que venga realizando a la fecha de presentación de su proposición, relativa al ejercicio corriente, o el último recibo, completado con una declaración responsable de no haberse dado de baja en la matrícula del citado impuesto.

Los sujetos pasivos que estén exentos del impuesto deberán presentar declaración responsable indicando la causa de exención. En el supuesto de encontrarse en alguna de las exenciones establecidas en el artículo 82.1 apartados e) y f) de la Ley Reguladora de las Haciendas Locales, texto refundido aprobado por Real Decreto Legislativo 2/2004, de 5 de marzo, deberán presentar asimismo resolución expresa de la concesión de la exención de la Agencia Estatal de Administración Tributaria.

Las agrupaciones y uniones temporales de empresas deberán acreditar el alta en el impuesto, sin perjuicio de la tributación que corresponda a las empresas integrantes de la misma.

b) Certificación positiva expedida por la Agencia Estatal de la Administración Tributaria, en la que se contenga genéricamente el cumplimiento de los requisitos establecidos en el artículo 13 del RGLCAP.

Además, el empresario propuesto como adjudicatario no deberá tener deudas en período ejecutivo de pago con la Comunidad Autónoma Andaluza, salvo que las mismas estuviesen debidamente garantizadas. El certificado que acredite la inexistencia de deudas se aportará de oficio por la Administración Autonómica.

Obligaciones con la Seguridad Social:
Certificación positiva expedida por la Tesorería de la Seguridad Social, en la que se contenga genéricamente el cumplimiento de los requisitos establecidos en el artículo 14 del RGLCAP.

Cláusula 10. Perfección y formalización del contrato.

El contrato se perfeccionará mediante la adjudicación realizada por el órgano de contratación y se formalizará en documento administrativo dentro del plazo de 30 días a contar desde el siguiente al de la notificación de la adjudicación del mismo, debiendo el adjudicatario acreditar ante el órgano de contratación previamente a dicha formalización, la constitución de la garantía definitiva y, en su caso, la suscripción de las pólizas de seguros que se determinan en el apartado 14 del Anexo I al presente pliego.

El contrato podrá formalizarse en escritura pública si así lo solicita el contratista, corriendo a su cargo los gastos derivados de su otorgamiento. En este caso, el contratista deberá entregar a la Administración una copia legitimada y una simple del citado documento, en el plazo máximo de un mes desde su formalización.

Cláusula 11. Riesgo y ventura.

La ejecución del contrato se realizará a riesgo y ventura del contratista, sin perjuicio de lo establecido en el artículo 144 de la LCAP.

Cláusula 12. Cesión del contrato.
Los derechos y obligaciones dimanantes del presente contrato podrán ser cedidos por el adjudicatario a un tercero siempre que se cumplan los supuestos y los requisitos establecidos en el artículo 114 de la LCAP.

Cláusula 13. Subcontratación.

El adjudicatario del contrato podrá concertar con terceros la realización parcial del mismo siempre que se cumplan los requisitos establecidos en el artículo 115 de la LCAP y quedará obligado al cumplimiento de los requisitos y obligaciones establecidos en el artículo 116 del mismo texto legal.

Cláusula 14. Resolución del contrato.

Son causas de resolución del contrato las recogidas en los artículos 111 y 149 de la LCAP, así como las siguientes:

- La pérdida sobrevenida de los requisitos para contratar con la Administración.

- El incumplimiento de las limitaciones establecidas en materia de subcontratación.

- La obstrucción a las facultades de inspección de la Administración.

- El incumplimiento de la obligación del contratista de guardar secreto respecto de los datos o antecedentes que, no siendo públicos o notorios, estén relacionados con el objeto del contrato y de los que tenga conocimiento con ocasión del mismo.
La resolución del contrato se acordará por el órgano de contratación de oficio o a instancia del contratista, en su caso, mediante procedimiento tramitado en la forma reglamentariamente establecida por el artículo 109 del RGLCAP.

En los casos de resolución por incumplimiento culpable del contratista, le será incautada la garantía y deberá, además, indemnizar a la Administración los daños y perjuicios ocasionados en lo que excedan del importe de la garantía incautada. La determinación de los daños y perjuicios que deba indemnizar el contratista se llevará a cabo por el órgano de contratación en decisión motivada previa audiencia del mismo, atendiendo, entre otros factores, al retraso que implique para la inversión proyectada y a los mayores gastos que ocasione a la Administración.

Para la aplicación de las causas de resolución se estará a lo dispuesto en los artículos 112 de la LCAP y 110 de su Reglamento y para sus efectos a lo dispuesto en los artículos 113 y 151 de la LCAP.

Sección segunda. De las garantías

Cláusula 15. Garantía provisional.

Para tomar parte en el procedimiento negociado, el órgano de contratación podrá exigir a los licitadores, la constitución previa a disposición de aquél, de una garantía provisional por el importe señalado en el apartado 8 del Anexo I al presente pliego, equivalente al 2 por 100 del presupuesto base de licitación.
Cuando el licitador presente su proposición bajo la forma de unión temporal de empresarios, la garantía provisional podrá constituirse por una o varias de las empresas participantes, siempre que en su conjunto se alcance la cuantía exigida en el apartado 8 del Anexo I y garantice solidariamente a todos los integrantes de la unión.

En cuanto a la forma y requisitos de las garantías, se estará a lo previsto en el Capítulo III del Título II del Libro I de la LCAP así como a lo dispuesto en los artículos 55, 56, 57 y 58 de su Reglamento.

La constitución de las garantías se ajustará, en cada caso, a los modelos que se indican en los Anexos III, IV, V y VI al presente pliego, y en el caso de inmovilización de deuda pública, al certificado que corresponda conforme a su normativa específica.

Esta garantía deberá constituirse, cuando se trate de garantía en metálico o valores, en la Tesorería de la Comunidad Autónoma Andaluza, de sus Organismos Autónomos, en su caso, o en los establecimientos equivalentes de otras Administraciones Públicas en los términos previstos en los Convenios que a tal efecto se suscribían con las mismas, o ante el propio órgano de contratación cuando se trate de aval o seguro de caución.

La garantía provisional permanecerá vigente hasta la adjudicación, acordándose su devolución en la misma. Sin embargo, será retenida la del adjudicatario e incautada la de las empresas que retiren injustificadamente su proposición antes de la adjudicación, siendo de aplicación lo establecido en el artículo 62 del RGLCAP.
Si el adjudicatario optase, en su caso, por aplicar el importe de la garantía provisional a la definitiva, deberá ser cancelada la garantía provisional simultáneamente a la constitución de la garantía definitiva.

En todo caso, la garantía provisional responderá del mantenimiento de las proposiciones presentadas por los licitadores hasta la adjudicación y de la proposición del adjudicatario hasta la formalización del contrato.

Cláusula 16. Garantía definitiva.

El adjudicatario estará obligado a constituir, a disposición del órgano de contratación, una garantía definitiva. La cuantía será igual al 4 por 100 del importe de adjudicación del contrato, según lo previsto en el apartado 9 del Anexo I. La constitución de esta garantía deberá ser acreditada por el adjudicatario en el plazo de 15 días naturales, contados desde que se le notifique la adjudicación del contrato. En todo caso, la garantía definitiva responderá de los conceptos a que se refiere el apartado 2 del artículo 43 de la LCAP.

La garantía definitiva se constituirá de conformidad con lo preceptuado en el Capítulo III del Título II del Libro I de la LCAP y en cualquiera de las formas que se establecen en los artículos 55, 56 y 57 del RGLCAP, ajustándose, de acuerdo con la forma escogida, a los modelos que se establecen en los Anexos III, IV, V y VI al presente pliego, debiendo consignarse en la Tesorería de la Comunidad de Andalucía, de sus Organismos Autónomos, en su
caso, o en los establecimientos equivalentes de otras Administraciones Públicas en los términos previstos en los Convenios que a tal efecto se suscriban con las mismas.

Si la garantía provisional se hubiese constituido en metálico o valores, será potestativo para el adjudicatario aplicar su importe a la garantía definitiva o proceder a la nueva constitución de esta última.

En el caso de amortización o sustitución de los valores que integran la garantía, el adjudicatario viene obligado a reponerlos en igual cuantía, siendo a su costa el otorgamiento de los documentos necesarios a tal fin.

Cuando como consecuencia de la modificación del contrato, experimente variación el precio del mismo, se reajustará la garantía en el plazo de 15 días naturales, contados desde la fecha en que se notifique al empresario el acuerdo de modificación, a efectos de que guarde la debida proporción con el precio del contrato resultante de la modificación, incurriendo, en caso contrario, en causa de resolución contractual. En el mismo plazo contado desde la fecha en que se hagan efectivas, en su caso, las penalidades o indemnizaciones, el adjudicatario deberá reponer o ampliar la garantía en la cuantía que corresponda, incurriendo, en caso contrario, en causa de resolución.

En cuanto a la garantía complementaria prevista en el artículo 36.3 de la LCAP, se estará, en su caso, a lo dispuesto en el apartado 10 del Anexo I al
presente pliego, teniendo, a todos los efectos, la consideración de garantía definitiva.

De conformidad con lo establecido en el artículo 36.6 de la LCAP, en ningún caso las garantías aplicadas podrán superar por acumulación el porcentaje del 20 fijado en el apartado 4 del mismo.

Cláusula 17. Devolución y cancelación de la garantía definitiva.

Aprobada la liquidación del contrato, si no resultasen responsabilidades que hayan de ejercitarse sobre la garantía definitiva y transcurrido el plazo de garantía de las obras determinado en el apartado 6 del Anexo I al presente pliego, se dictará acuerdo de devolución de aquélla o de cancelación del aval, conforme al procedimiento establecido en el artículo 24 del RGPCM.

Transcurrido un año desde la fecha de terminación del contrato sin que la recepción formal y la liquidación, hubiesen tenido lugar por causas no imputables al contratista, se procederá a la devolución o cancelación de la garantía, siempre que no se hayan producido las responsabilidades a que se refiere el artículo 43.2 de la LCAP y sin perjuicio de lo dispuesto en el artículo 65.3 de su Reglamento.

En el supuesto de que se hubiesen establecido recepciones parciales, se estará a lo indicado en el apartado 5 del Anexo I al presente pliego respecto de la cancelación parcial de la garantía definitiva.

Sección tercera. De las proposiciones
Cláusula 18. Presentación de proposiciones.

Las proposiciones se presentarán en la forma, plazo y lugar indicados en el escrito de invitación, de conformidad con lo establecido en el artículo 80 del RGLCAP.

Cada empresario no podrá presentar más de una proposición. Tampoco podrá suscribir ninguna proposición en unión temporal con otros empresarios si lo ha hecho individualmente o figurar en más de una unión temporal. La contravención de estas prohibiciones dará lugar a la inadmisión de todas las proposiciones por él suscritas.

La presentación de proposiciones supone, por parte del empresario, la aceptación incondicional del clausulado de este pliego, y del de prescripciones técnicas que rigen en el presente contrato, sin salvedad alguna, sin perjuicio de los aspectos negociables previstos, en su caso, en el apartado 16 del Anexo I al presente pliego.

Cláusula 19. Forma y contenido de las proposiciones.

Las proposiciones constarán de TRES (3) SOBRES, cerrados y firmados por el licitador o persona que lo represente, debiendo figurar en el exterior de cada uno de ellos, el número de referencia y la denominación del contrato al que licitan, el nombre y apellidos del licitador o razón social de la empresa y su correspondiente CIF o NIF. En su interior se hará constar una relación numérica de los documentos
que contienen. Los sobres se dividen de la siguiente forma:

A) SOBRE Nº 1 "DOCUMENTACIÓN ADMINISTRATIVA" que incluirá, preceptivamente, los siguientes documentos:

1.-Capacidad de obrar.

1.1.- Si la empresa fuera persona jurídica, la escritura de constitución o modificación, en su caso, inscrita en el Registro Mercantil, cuando este requisito fuera exigible conforme a la legislación mercantil que le sea aplicable. Si no lo fuere, la escritura o documento de constitución, estatutos o acto fundacional en el que consten las normas por las que se regula su actividad, inscritos, en su caso, en el correspondiente Registro oficial, así como el Código de Identificación Fiscal (CIF), todo ello en original o copia que tenga el carácter de auténtica conforme a la legislación vigente, o fotocopia compulsada por funcionario habilitado para ello. Estos documentos deberán recoger el exacto régimen jurídico del licitador en el momento de la presentación de la proposición.

1.2.- Si se trata de empresario individual, el DNI o documento que, en su caso, le sustituya reglamentariamente, en copia que tenga el carácter de auténtica conforme a la legislación vigente, o fotocopia compulsada por funcionario habilitado para ello.

1.3.- Cuando se trate de empresarios no españoles de Estados miembros de la Comunidad Europea o signatarios del Acuerdo sobre el Espacio Económico Europeo, la capacidad de obrar se acreditará
mediante su inscripción en un registro profesional o comercial, cuando este requisito sea exigido por la legislación del Estado respectivo, o la presentación de las certificaciones que se indican en el Anexo I 1 del RGLCAP, para los contratos de obras.

1.4.- Cuando se trate de empresas extranjeras no comprendidas en el párrafo anterior, informe de la Misión Diplomática Permanente u Oficina Consular de España del lugar del domicilio de la empresa en el que se haga constar, previa acreditación por la empresa, que figuran inscritas en el Registro local profesional, comercial o análogo, o en su defecto, que actúan con habitualidad en el tráfico local en el ámbito de las actividades a las que se extiende el objeto del contrato.

Igualmente deberán acompañar informe de la Misión Diplomática Permanente de España o de la Secretaría General de Comercio Exterior del Ministerio de Industria, Turismo y Comercio sobre la condición de Estado signatario del Acuerdo sobre Contratación Pública de la Organización Mundial del Comercio, siempre que se trate de contratos de cuantía igual o superior a la prevista en los artículos 135.1 o, en caso contrario, el informe de reciprocidad a que se refiere el artículo 23.1 de la LCAP.

Estas empresas deberán acreditar que tienen abierta sucursal en España, con designación de apoderados o representantes para sus operaciones y que están inscritas en el Registro Mercantil.

1.5.- Las empresas extranjeras presentarán su documentación traducida de forma oficial al castellano.
2.- Bastanteo de poderes.

Los que comparezcan o firmen proposiciones en nombre de otro o representen a una persona jurídica, deberán acompañar también poder acreditativo de su representación declarado bastante por un Letrado de los Servicios Jurídicos de la Comunidad Andaluza, todo ello en original o copia compulsada. Igualmente deberá presentar fotocopia compulsada del D.N.I. de la persona a cuyo favor se otorgó el apoderamiento o representación. Si el documento acreditativo de la representación contuviese delegación permanente de facultades, deberá figurar inscrito en el Registro Mercantil.

3.- Declaraciones relativas a no estar incursos en prohibiciones e incompatibilidades para contratar con la Administración, de estar al corriente en el cumplimiento de obligaciones tributarias y con la Seguridad Social y de que no existen deudas en período ejecutivo con la Comunidad Autónoma Andaluza.

Declaración responsable, conforme al modelo fijado en el Anexo VII al presente pliego, de que el empresario, si se tratare de persona física, o la empresa, sus administradores y representantes, si se tratare de persona jurídica, así como el firmante de la proposición, no están incursos en ninguna de las prohibiciones e incompatibilidades para contratar señaladas en el artículo 20 de la LCAP, en los términos y condiciones previstas en el mismo. Esta declaración comprenderá expresamente la circunstancia de hallarse al corriente del cumplimiento de las obligaciones tributarias y con la
Seguridad Social impuestas por las disposiciones vigentes, así como de no tener deudas en período ejecutivo de pago, salvo que estuvieran garantizadas, con la Comunidad Andaluza.

5. Jurisdicción de empresas extranjeras.

Las empresas extranjeras deberán presentar declaración de someterse a la jurisdicción de los Juzgados y Tribunales españoles de cualquier orden, para todas las incidencias que de modo directo o indirecto pudieran surgir del contrato, con renuncia, en su caso, al fuero jurisdiccional extranjero que pudiera corresponderles.

9.- Garantía provisional.

Justificante de haber constituido la garantía provisional por el importe señalado en el apartado 8 del Anexo I al presente pliego, de conformidad con las condiciones y requisitos establecidos en la cláusula 15 del mismo.

10.- Empresas pertenecientes a un mismo grupo.

Las empresas pertenecientes a un mismo grupo, entendiéndose por tales las que se encuentren en alguno de los supuestos del artículo 42.1 del Código de Comercio y que presenten distintas proposiciones para concurrir individualmente a la adjudicación, deberán presentar declaración en la que hagan constar esta condición.
También deberán presentar declaración explícita aquellas sociedades que, presentando distintas proposiciones, concurran en alguno de los supuestos alternativos establecidos en el artículo 42.1 del Código de Comercio, respecto de los socios que la integran.

B) SOBRE Nº 2 "PROPOSICIÓN ECONÓMICA"

La proposición económica se presentará redactada conforme al modelo fijado en el Anexo II al presente pliego, no aceptándose aquellas que contengan omisiones, errores o tachaduras que impidan conocer claramente lo que la Administración estime fundamental para considerar la oferta. En caso de discrepancia entre el importe expresado en letra y el expresado en cifra, prevalecerá la cantidad que se consigne en letra, salvo que de los documentos que componen la proposición se desprenda otra cosa. Si alguna proposición no guardase concordancia con la documentación examinada y admitida, excediese del presupuesto base de licitación, variase sustancialmente el modelo establecido, comportase error manifiesto en el importe de la proposición, o existiese reconocimiento por parte del licitador de que adolece de error o inconsistencia que la hagan inviable, será desechada por la Mesa de contratación mediante resolución motivada, sin que sea causa bastante para el rechazo el cambio u omisión de algunas palabras del modelo si ello no altera su sentido.

A todos los efectos se entenderá que las ofertas de los licitadores comprenden el Impuesto sobre el Valor Añadido, salvo indicación expresa en contrario.
C) SOBRE Nº 3 “DOCUMENTACIÓN TÉCNICA”.

En este sobre se incluirá la documentación técnica que se exija, en su caso, en el apartado 18 del Anexo I al presente Pliego, en relación con los aspectos económicos y técnicos que, en su caso, hayan de ser objeto de negociación con las empresas.

Cláusula 20. Calificación de la documentación presentada, valoración de los criterios de selección y apertura y examen de las proposiciones.

Constituida la mesa, en su caso, a los efectos de calificación de la documentación, si observase defectos u omisiones subsanables en la documentación presentada, lo comunicará a los interesados, mediante telefax, correo electrónico o cualquier otro medio que permita tener constancia de su recepción por el interesado, de la fecha en que se reciba y del contenido de la comunicación, concediéndose un plazo no superior a cinco días naturales para que los licitadores los corrijan o subsanen o para que presenten aclaraciones o documentos complementarios.

Una vez calificada la documentación y realizadas, si así procede, las actuaciones indicadas, la Mesa, en su caso, o el órgano de contratación procederá a determinar las empresas que se ajustan a los criterios de selección que reestablecen en el apartado 12 de Anexo I al presente pliego, pronunciándose sobre los admitidos al procedimiento, los rechazados y sobre las causas del rechazo.
Seguidamente, se procederá a la apertura del sobre nº 2 “Proposición económica”, de las empresas admitidas, dando lectura a las proposiciones, y tras la negociación acerca de los aspectos indicados en el apartado 16 del Anexo I, se elevarán con el acta y la propuesta pertinente al órgano de contratación.

Adjudicado el contrato y transcurridos los plazos para la interposición de recursos sin que se haya interpuesto, la documentación que acompaña a las proposiciones quedará a disposición de los interesados. Si éstos no retiran su documentación en los tres meses siguientes a la fecha en que se les notifique la adjudicación, la Administración no estará obligada a seguirla custodiando, a excepción de los documentos justificativos de la garantía provisional, que se conservarán para su entrega a los interesados.

CAPÍTULO II
EJECUCIÓN DE LA OBRA

Sección primera. De la interpretación del proyecto y dirección de las obras

Cláusula 21. Interpretación del proyecto.

Corresponde al director de la obra la interpretación técnica del proyecto y la facultad de dictar las órdenes para su desarrollo.

El contratista no podrá aducir, en ningún caso, indefinición del proyecto. Si a su juicio, adoleciese de alguna indefinición deberá solicitar por escrito del director de la obra la correspondiente definición con
la antelación suficiente a su realización, quien deberá contestar en el plazo de un mes a la citada solicitud.
Cláusula 22. Dirección de las obras.

Las obras, a los efectos previstos en la cláusula 3ª del Pliego de Cláusulas Administrativas Generales para la Contratación de Obras del Estado, estarán adscritas al Servicio que se menciona en el apartado 3 del Anexo I al presente pliego.

El órgano de contratación, a través de la dirección de las obras, efectuará la inspección, comprobación y vigilancia para la correcta realización de la obra ejecutada, ajustándose a lo dispuesto en las cláusulas 4 y 21 del Pliego de Cláusulas Administrativas Generales para la Contratación de Obras del Estado.

Sin perjuicio de lo dispuesto en el artículo 25.5 del Decreto 45/1997 de 20 de marzo, que desarrolla el régimen de control ejercido por la Intervención General, será misión exclusiva del director la comprobación de la realización de las obras según el proyecto, así como sus instrucciones en el curso de la ejecución de las mismas.

En sus ausencias estará representado, a todos los efectos, por el auxiliar técnico por él designado.

El contratista guardará y hará guardar las consideraciones debidas al personal de la dirección de las obras, que tendrá libre acceso a todos los puntos de trabajo y almacenes de materiales destinados a las obras para su previo reconocimiento.

Cuando el contratista, o personas de él dependientes, incurra en actos u omisiones que
comprometan o perturben la buena marcha del contrato, el órgano de contratación podrá exigir la adopción de medidas concretas para conseguir o restablecer el buen orden en la ejecución de lo pactado.

Durante el curso de la obra se realizarán los replanteos parciales que la dirección de la misma estime convenientes. De todos ellos se levantará acta por cuadruplicado ejemplar con los planos correspondientes. Los gastos de material y personal que ocasionen los replanteos serán de cuenta del contratista. Este permanecerá en la obra desde su comienzo y durante toda la jornada de trabajo.

El director de la obra podrá ordenar la apertura de calas cuando sospeche la existencia de vicios ocultos de construcción o haberse empleado materiales de calidad deficiente. De confirmarse la existencia de tales defectos, serán de cuenta del contratista los gastos derivados del reconocimiento y subsanación. En caso contrario, la dirección certificará la indemnización que corresponde a la ejecución y reparación de las calas, valoradas a los precios unitarios del presupuesto de adjudicación. En cuanto a la demolición y reconstrucción de las obras defectuosas o mal ejecutadas y sus gastos, se estará a lo dispuesto en la cláusula 44 del Pliego de Cláusulas Administrativas Generales para la Contratación de Obras del Estado, en cuanto no se oponga a lo establecido en la LCAP y su Reglamento.

Asimismo, el director de la obra podrá ordenar la realización de ensayos y análisis de materiales y unidades de obra y que se recaben los informes
específicos que en cada caso resulten pertinentes, siendo a cargo del contratista los gastos que por estas operaciones se originen, salvo que se determine otra cosa en el Anexo I al presente pliego.

La dirección podrá ordenar, con carácter de urgencia, la ejecución de los trabajos necesarios en los casos de peligro inminente o de obstáculos imprevistos. El contratista deberá ejecutar tales trabajos sin perjuicio de que la dirección de la obra promueva con posterioridad la tramitación administrativa correspondiente.

El procedimiento a seguir en los casos de fuerza mayor del artículo 144.2 de la LCAP, será el establecido en el artículo 146 de su Reglamento.

La resolución de incidencias surgidas en la ejecución del contrato se tramitará, mediante expediente contradictorio, de acuerdo con lo establecido en el artículo 97 del RGLCAP.

Durante la ejecución del contrato, el adjudicatario asumirá sus responsabilidades inherentes a la ejecución de los trabajos y al control y vigilancia de materiales y obras que ejecute conforme a las instrucciones, de obligado cumplimiento, dadas por la dirección e inspección de la obra.

Sección segunda. De la comprobación del replanteo, Plan de Seguridad y Salud y programa de trabajo.

Cláusula 23. Comprobación del replanteo.
En el plazo que se señale en el documento de formalización del contrato, y en todo caso, dentro del plazo de un mes desde la fecha de formalización de aquél, el servicio de la Administración encargado de las obras, procederá en presencia del contratista a la comprobación del replanteo hecho previamente a la licitación, en el que intervendrán el contratista o su representación legal y el director de la obra, extendiéndose acta que deberá ser firmada por todos los intervinientes. El acta deberá recoger expresamente lo dispuesto en el artículo 140 del RGLCAP.

Si el resultado de la comprobación demuestra, a juicio del director de la obra y sin reserva por parte del contratista, la viabilidad del proyecto y la disponibilidad de los terrenos, se dará por aquél la autorización para su inicio, empezándose a contar el plazo de ejecución desde el día siguiente al de la firma del acta. En el caso de que el contratista, sin formular reservas sobre la viabilidad del proyecto, hubiera hecho otras observaciones que pudieran afectar a la ejecución de la obra, la dirección, consideradas tales observaciones, decidirá iniciar o suspender el comienzo de la misma, justificándolo en la propia acta. La autorización de inicio constará explícitamente en la misma, quedando notificado el contratista por el hecho de suscribirla.

En las obras de infraestructuras hidráulicas, de transporte y de carreteras, y en lo concerniente a la disponibilidad de los terrenos, se estará a lo dispuesto en los artículos 129.2 de la LCAP y 139.3 de su Reglamento.
En aquellos casos en los que no resulten acreditadas las circunstancias a las que se refiere el párrafo anterior o el director de la obra considere necesaria la modificación de las obras proyectadas, quedará suspendida la iniciación de las mismas, haciéndolo constar en el acta, quedando obligado a dar cuenta inmediata a la Administración, que resolverá lo que proceda. El régimen de la modificación se ajustará a lo previsto en el artículo 141 del RGLCAP.

En tanto sea dictada la resolución, quedará suspendida la iniciación de las obras desde el día siguiente a la firma del acta, computándose a partir de dicha fecha el plazo de seis meses a que hace referencia el artículo 149 b) de la LCAP.

Desaparecida la causa que motivó la falta de inicio, el órgano de contratación dictará la resolución correspondiente, que se notificará fehacientemente al contratista. El plazo de ejecución empezará a contarse desde el día siguiente a la recepción de la notificación del acuerdo de autorización de inicio de las obras.

Lo dispuesto anteriormente se aplicará igualmente cuando el contratista formulase reservas en el acto de comprobación del replanteo. No obstante, si a juicio del órgano de contratación tales reservas resultasen infundadas, no quedará suspendida la iniciación de las obras ni, en consecuencia, será necesario dictar nuevo acuerdo para que se produzca la iniciación de las mismas y se modifique el cómputo del plazo para su ejecución.

En el caso de que el expediente haya sido declarado de tramitación urgente, por aplicación de lo dispuesto
en el artículo 71 de la LCAP, el órgano de contratación podrá acordar el inicio de la obra inmediatamente después de la constitución de la garantía definitiva correspondiente, sin perjuicio de cuanto proceda en lo referente al acta de comprobación del replanteo.

El acta de comprobación del replanteo formará parte integrante del contrato a los efectos de su exigibilidad.

Cláusula 24. Plan de Seguridad y Salud.

En aplicación del estudio de seguridad y salud o, en su caso, del estudio básico, según proceda, de acuerdo con lo establecido en el artículo 4 del R.D. 1627/1997, de 24 de octubre, por el que se establecen disposiciones mínimas de seguridad y salud en las obras de construcción, el contratista elaborará un plan de seguridad y salud en el trabajo en el que se analicen, estudien, desarrollen y complementen las previsiones contenidas en el estudio o estudio básico, en función de su propio sistema de ejecución de la obra.

El plan de seguridad y salud deberá ser aprobado por la Administración antes del inicio de la obra, con el correspondiente informe del coordinador en materia de seguridad y salud durante la ejecución de la obra, o del director, en su caso.

En todo caso, respecto del plan de seguridad y salud en las obras de construcción se estará a lo dispuesto sobre el mismo en el R.D. 1627/1997, de 24 de octubre.
Cláusula 25. Programa de trabajo.

El contratista, en el plazo máximo de treinta días, contados desde la formalización del contrato, habrá de someter a la aprobación del órgano de contratación correspondiente, el programa para su realización, en el que deberán incluirse los datos exigidos en el artículo 144 del RGLCAP.

El órgano de contratación resolverá sobre el mismo dentro de los quince días siguientes a su presentación, pudiendo imponer al programa de trabajo presentado la introducción de modificaciones o el cumplimiento de determinadas prescripciones siempre que no contravengan las cláusulas del contrato.

Cada vez que se modifiquen las condiciones contractuales, el contratista queda obligado a la actualización y puesta al día de este programa.

Sección tercera. Del plazo de ejecución

Cláusula 26. Plazo de ejecución.

El plazo de ejecución de las obras será el que figura en el apartado 5 del Anexo I al presente pliego o, en su caso, el ofertado por el adjudicatario, siendo los plazos parciales los que se fijen como tales en la aprobación del programa de trabajo.

El cómputo del plazo se iniciará desde el día siguiente al de la fecha del acta de comprobación del replanteo, si la Administración autoriza el inicio de la obra.
Los plazos parciales que se fijen en la aprobación del programa de trabajo, con los efectos que en la aprobación se determinen, se entenderán integrantes del contrato a los efectos legales pertinentes.

El contratista podrá desarrollar los trabajos con mayor celeridad que la necesaria para efectuar las obras en el plazo contractual, salvo que, a juicio de la dirección de las obras, existiesen razones para estimarlo inconveniente. No obstante, se estará a lo dispuesto en el artículo 96 del RGLCAP y en la cláusula 53 del Pliego de Cláusulas Administrativas Generales para la Contratación de Obras del Estado.

Cláusula 27. Cumplimiento del plazo y penalidades por demora.

El contratista está obligado a cumplir el contrato dentro del plazo total fijado para la realización del mismo, así como de los plazos parciales señalados para su ejecución sucesiva.

Si las obras sufrieren un retraso en su ejecución, y siempre que el mismo no fuere imputable al contratista y éste ofreciera cumplir sus compromisos, se concederá por el órgano de contratación un plazo que será, por lo menos, igual al tiempo perdido, a no ser que el contratista pidiese otro menor, regulándose su petición por lo establecido en el artículo 100 del RGLCAP.

Cuando el contratista, por causas imputables al mismo, hubiese incurrido en demora respecto al cumplimiento del plazo total o de los plazos parciales, si éstos se hubiesen previsto, para lo que se estará al apartado 5 del Anexo I al presente pliego, la
Administración podrá optar, indistintamente, por la resolución del contrato o por la imposición de penalidades, de acuerdo con lo dispuesto en el artículo 95 de la LCAP.

Cada vez que las penalidades por demora alcancen un múltiplo del 5 por 100 del precio del contrato, el órgano de contratación estará facultado para proceder a la resolución del mismo o acordar la continuidad de su ejecución con imposición de nuevas penalidades. En este último supuesto, el órgano de contratación concederá la ampliación del plazo que estime necesaria para la terminación del contrato.

Asimismo, la Administración tendrá las mismas prerrogativas cuando la demora en el cumplimiento de los plazos parciales haga presumir razonablemente la imposibilidad del cumplimiento del plazo total.

La Administración, en caso de incumplimiento de la ejecución parcial de las prestaciones definidas en el contrato por parte del contratista, podrá optar por la resolución del contrato o por las penalidades que se determinan en el apartado 15 del Anexo I al presente pliego.

La aplicación y el pago de estas penalidades no excluye la indemnización a que la Administración pueda tener derecho por daños y perjuicios ocasionados con motivo del retraso imputable al contratista.

Sección cuarta. De la modificación y suspensión de las obras
Cláusula 28. *Modificación de las obras.*

El órgano de contratación podrá acordar, una vez perfeccionado el contrato y por razones de interés público, modificaciones en el proyecto cuando sean consecuencia de necesidades nuevas o de causas imprevistas, justificándolo debidamente en el expediente.

En lo concerniente a su régimen se estará a lo dispuesto en los artículos 59, 101 y 146 de la LCAP, así como a lo dispuesto en los artículos 158 a 162 de su Reglamento y 59 y 62 del Pliego de Cláusulas Administrativas Generales para la Contratación de Obras del Estado, en cuanto no se opongan a dichos textos legales.

Cláusula 29. *Suspensión de las obras.*

La Administración, por razones de interés público, podrá acordar la suspensión de la ejecución del contrato. Igualmente, procederá la suspensión del contrato si se diese la circunstancia señalada en el artículo 99.5 de la LCAP. A efectos de la suspensión del contrato se estará a lo dispuesto en el artículo 102 de la LCAP, así como en los preceptos concordantes de su Reglamento y del Pliego de Cláusulas Administrativas Generales para la Contratación de Obras del Estado, en cuanto no se oponga éste a lo establecido en dichos textos legales.

CAPÍTULO III

DERECHOS Y OBLIGACIONES DEL CONTRATISTA
Sección primera. De los abonos al contratista

Cláusula 30. Abonos, mediciones y valoración.

Sólo se abonará al contratista la obra que realice conforme a los documentos del proyecto y, en su caso, a las órdenes recibidas por escrito del director de la obra. Por consiguiente, no podrá servir de base para reclamaciones de ningún género el número de unidades de obra realizadas no consignadas en el proyecto.

La medición de los trabajos efectuados se llevará a cabo por la dirección de la obra, pudiendo el contratista presenciar la realización de las mismas. Para las obras o partes de obra cuyas dimensiones y características hayan de quedar posterior y definitivamente ocultas, el contratista está obligado a avisar con la suficiente antelación, a fin de que la dirección pueda realizar las correspondientes mediciones y toma de datos, levantando los planos que las definan, cuya conformidad suscribirá el contratista. A falta de aviso anticipado, cuya prueba corresponde al contratista, queda éste obligado a aceptar las decisiones de la Administración sobre el particular.

Para cada clase de obra se adoptará como unidad de medida la señalada en el epígrafe correspondiente de los estudios de mediciones del proyecto. Terminada la medición, por el director de la obra se procederá a la valoración de la obra ejecutada, aplicando a cada unidad el precio unitario correspondiente del presupuesto o el contradictorio que proceda, teniendo en cuenta lo prevenido en los
pliegos para los abonos de obras defectuosas, materiales acopiados, partidas alzadas y abonos a cuenta del equipo puesto en obra.

Al resultado de la valoración, obtenido en la forma expresada en el párrafo anterior, se le aumentarán los porcentajes adoptados para formar el presupuesto base de licitación y la cifra que resulte se multiplicará por el coeficiente de adjudicación, obteniendo así la relación valorada mensual, que dará lugar a la certificación mensual, la que se expedirá por la Administración en los diez días siguientes al mes que corresponda. La demora en el pago por plazo superior a sesenta días devengará a favor del contratista los intereses de demora y la indemnización por los costes de cobro en los términos previstos en la Ley por la que se establecen medidas de lucha contra la morosidad en las operaciones comerciales, de conformidad con lo establecido en el artículo 99 de la LCAP.

En todo caso, las certificaciones parciales que se expidan y las cantidades que se abonen al contratista tendrán el carácter de pagos parciales con el carácter de abonos a cuenta, que no supondrán en forma alguna aprobación y recepción de las obras que comprenden, y a resultas de la certificación final de las obras ejecutadas, que se expedirá en el plazo de dos meses contados a partir de la recepción y a cuenta de la liquidación del contrato.

Las partidas señaladas en el presupuesto a tanto alzado, se abonarán conforme se indica en el pliego de prescripciones técnicas particulares. En su defecto, se estará a lo dispuesto en el artículo 154 del RGLCAP.
El contratista, previa petición escrita, tendrá derecho a percibir abonos a cuenta por materiales acopiados y por instalaciones o equipos, en la forma y con las garantías que, a tal efecto determinan los artículos 155 a 157 del RGLCAP. La cuantía y condiciones se encuentran señaladas en el apartado 13 del Anexo I al presente pliego. Los referidos pagos serán asegurados mediante la prestación de la garantía que se especifica en dicho apartado.

Si fuera necesario emplear materiales o ejecutar unidades de obra no comprendida en el proyecto o cuyas características difieran sustancialmente de ellas, los precios de aplicación de las mismas serán fijados por la Administración, a la vista de la propuesta del director de la obra y de las observaciones del contratista a esta propuesta en trámite de audiencia, por plazo mínimo de tres días hábiles.

Los nuevos precios, una vez aprobados por el órgano de contratación, se considerarán incorporados a todos los efectos a los cuadros de precios del proyecto, sin perjuicio de lo establecido en el artículo 146.2 de la LCAP.

Conforme a lo dispuesto en el artículo 100 de la LCAP, y en los términos establecidos en el mismo, los contratistas podrán ceder el derecho de cobro que tengan frente a la Administración conforme a Derecho.

- El plazo de vencimiento de cada documento endosado será de dos meses desde la fecha del abono realizado al titular por parte de la entidad.
- El coste máximo para el acreedor será de Euribor a tres meses más un diferencial máximo de 0,50%, estando exenta la operación de todo tipo de comisión.

Cláusula 31. Revisión de precios.

En la revisión de precios se estará a lo especificado en el apartado 11 del Anexo I del presente pliego, todo ello de conformidad con los artículos 103 a 108 de la LCAP y 104 a 106 de su Reglamento.

Sección segunda. De las exigencias al contratista

Cláusula 32. Obligaciones, gastos e impuestos exigibles al contratista.

Son de cuenta del contratista los gastos e impuestos, anuncios, en su caso, ya sea en Boletines, Diarios Oficiales, o en cualquier medio de comunicación, los de formalización del contrato en el supuesto de elevación a escritura pública, así como de cuantas licencias, autorizaciones y permisos procedan, en especial la tasa por prestación de servicios urbanísticos, por el concepto de licencia de obras y otros, además de cuantos visados sean preceptivos para la entrega debidamente legalizada de las instalaciones. Asimismo, vendrá obligado a satisfacer todos los gastos que la empresa deba realizar para el cumplimiento del contrato, como son los generales, financieros, de seguros, transportes y desplazamientos, materiales, instalaciones, honorarios del personal a su cargo, de comprobación y ensayo, tasas y toda clase de tributos, en especial el Impuesto sobre Construcciones, Instalaciones y Obras si este fuera exigible, el IVA y cualesquiera
otros que pudieran derivarse de la ejecución del contrato durante la vigencia del mismo.

Asimismo, vendrá obligado a la suscripción, a su cargo, de las pólizas de seguros que estime convenientes el órgano de contratación, según lo establecido en el apartado 14 del Anexo I al presente pliego.

El contratista tendrá la obligación de colocar, a su cargo, carteles informativos de la obra, siguiendo los modelos e instrucciones de la Administración.

Tratándose de obras que se financien en todo o en parte con cargo a fondos del FEDER, el contratista deberá colocar en la obra carteles informativos de la participación del FEDER, al menos en igual número que los que hagan publicidad de la empresa contratista.

El contratista queda obligado a realizar, a su costa, si así lo solicita la dirección de la obra, un reportaje fotográfico mensual sobre las mismas, así como cuantas fotografías le puedan ser exigidas durante la ejecución de aquellas.

El contratista está obligado a instalar, a su costa, las señalizaciones precisas para indicar el acceso a la obra, las de circulación en la zona que ocupan los trabajos, así como las de los puntos de posible peligro debido a la marcha de aquellos, tanto en dicha zona como en sus lindes o inmediaciones, así como a cumplir las órdenes a que se refiere la cláusula 23 del Pliego de Cláusulas Administrativas Generales para la Contratación de Obras del Estado.
El contratista está obligado no sólo a la ejecución de las obras sino también a su conservación y policía hasta la recepción y durante el plazo de garantía de las mismas. Igualmente, el adjudicatario responderá de la vigilancia de los terrenos así como de los bienes que haya en los mismos, de conformidad en lo dispuesto de la cláusula 33 del Pliego de Cláusulas Administrativas Generales para la Contratación de Obras del Estado. Si así fuera requerido por la dirección de la obra, el contratista tendrá la obligación de adscribir, con carácter permanente, personal de guarda en las obras hasta la recepción de las mismas.

Tanto en las ofertas que formulen los licitadores como en las propuestas de adjudicación, se entenderán comprendidos, a todos los efectos, los tributos de cualquier índole que graven los diversos conceptos, incluido el Impuesto sobre el Valor Añadido o, en su caso, el impuesto que por la realización de la actividad pudiera corresponder sin que por tanto, puedan ser éstos repercutidos como partida independiente.

Sección tercera. De las disposiciones laborales y sociales

Cláusula 33. Obligaciones laborales y sociales.

El contratista está obligado al cumplimiento de la normativa vigente en materia laboral, de seguridad social, de integración social de minusválidos y de prevención de riesgos laborales, conforme a lo dispuesto en la Ley 31/1995, de 8 de noviembre, sobre Prevención de Riesgos Laborales y en el Reglamento de los Servicios de Prevención,
aprobado por Real Decreto 39/1997, de 17 de enero, así como de las que se promulguen durante la ejecución del contrato.

Sección cuarta. De los seguros y responsabilidades por daños

Cláusula 34. Seguros.

El contratista, estará obligado a suscribir, con compañías que hayan sido previamente aceptadas por el órgano de contratación, las pólizas de seguros que se indican en el apartado 14 del Anexo I al presente pliego, por los conceptos, cuantías, coberturas, duración y condiciones que se establecen en el mismo.

Cláusula 35. Responsabilidad del contratista por daños y perjuicios.

El contratista será responsable de todos los daños y perjuicios directos e indirectos que se causen a terceros como consecuencia de las operaciones que requiera la ejecución del contrato. Si los daños y perjuicios ocasionados fueran consecuencia inmediata y directa de una orden dada por la Administración, ésta será responsable dentro de los límites señalados en las leyes. También será la Administración responsable de los daños que se causen a terceros como consecuencia de los vicios del proyecto elaborado por ella misma. En todo caso, será de aplicación lo preceptuado en el artículo 97 de la LCAP.

CAPÍTULO IV

EXTINCIÓN DEL CONTRATO
Cláusula 36. Recepción de la obra.

El contrato se entenderá cumplido por el contratista, cuando éste haya realizado, de acuerdo con los términos del mismo, y a satisfacción de la Administración, la totalidad de su objeto.

Si las obras se encuentran en buen estado y con arreglo a las prescripciones previstas, el representante designado por la Administración, las dará por recibidas, levantándose la correspondiente acta por cuadruplicado, que deberá ser firmada por los concurrentes a la recepción, entregándose un ejemplar al funcionario técnico que represente a la Administración, otro al director de la obra, el tercero al representante de la Intervención General y el cuarto al contratista, comenzando entonces el plazo de garantía. En el acta de recepción el director de la obra fijará la fecha para el inicio de la medición general, quedando notificado el contratista para dicho acto.

El contratista tiene obligación de asistir a la recepción de la obra. Si por causas que le sean imputables no cumple esta obligación, el representante de la Administración le remitirá un ejemplar del acta para que, en el plazo de diez días, formule las alegaciones que considere oportunas, sobre las que resolverá el órgano de contratación.

Cuando las obras no se hallen en estado de ser recibidas, se hará constar así en el acta, y el director de las mismas señalará los defectos observados y detallará las instrucciones precisas fijando un plazo para remediar aquellos. Si transcurrido dicho plazo el
contratista no lo hubiese efectuado, podrá concedérsle otro plazo improrrogable o declarar resuelto el contrato, por causas imputables al contratista.

Cláusula 37. Medición general y certificación final.

Recibidas las obras, se procederá seguidamente a su medición general con asistencia del contratista, formulándose por el director de la obra, en el plazo de un mes desde la recepción, la medición de las realmente executadas de acuerdo con el proyecto y a redactar la certificación final, que deberá ser aprobada por el órgano de contratación dentro del plazo de dos meses contados a partir de la recepción y que será abonada, en su caso, al contratista dentro del plazo de sesenta días a partir de su expedición a cuenta de la liquidación del contrato.

Sección segunda. Del plazo de garantía y de la liquidación

Cláusula 38. Plazo de garantía y liquidación.

El plazo de garantía comenzará a contar desde la fecha de la recepción y será el indicado en el apartado 6 del Anexo I al presente pliego. Los gastos de conservación y vigilancia durante el plazo de garantía serán a cargo del contratista.

Durante dicho plazo cuidará el contratista, en todo caso, de la conservación y policía de las obras con arreglo a lo previsto en el pliego de prescripciones técnicas particulares del proyecto y a las
instrucciones que dicte la dirección de la obra. Si, a juicio de la Administración, descuidase la conservación y diere lugar a que peligre la obra, se ejecutarán por ella misma y a costa del contratista los trabajos necesarios para evitar el daño.

En el supuesto de que hubiere recepciones parciales, el plazo de garantía de las partes recibidas comenzará a contarse desde las fechas de las respectivas recepciones parciales, sin perjuicio de lo dispuesto en la cláusula 73 del Pliego de Cláusulas Administrativas Generales para la Contratación de Obras del Estado.

Dentro del plazo de quince días anteriores al cumplimiento del plazo de garantía, el director facultativo de la obra, de oficio o a instancia del contratista, redactará un informe sobre el estado de las obras. Si este fuere favorable, el contratista quedará relevado de toda responsabilidad, salvo lo dispuesto en el artículo 148 de la LCAP, procediéndose a la devolución o cancelación de la garantía, a la liquidación del contrato y en su caso, al pago de las obligaciones pendientes, aplicándose a éste último lo dispuesto en el artículo 99.4 de la LCAP. Si el informe no fuese favorable y los defectos observados se debieran a deficiencias en la ejecución de las obras y no al uso de lo construido, durante el plazo de garantía el director procederá a dictar las oportunas instrucciones al contratista para la debida reparación de lo construido, concediéndole un plazo para ello durante el cual continuará encargado de la conservación de la obra, sin derecho a percibir cantidad alguna por ampliación del plazo de garantía.
En todo caso, transcurrido el plazo de garantía, si el informe fuese favorable o, en caso contrario, una vez reparado lo construido, se formulará por el director de la obra y en el plazo de un mes la propuesta de liquidación de las realmente ejecutadas, notificándose al contratista para que en el plazo de diez días preste su conformidad o manifieste los reparos que estime oportunos. En el plazo de dos meses, contados a partir de la contestación del contratista o del transcurso del plazo establecido para tal fin, el órgano de contratación deberá aprobar la liquidación y abonar, en su caso, el saldo resultante de la misma.

Siempre que por razones excepcionales de interés público debidamente motivadas en el expediente el órgano de contratación acuerde la ocupación efectiva de la obra o su puesta en servicio para el uso público, aún sin el cumplimiento del acto formal de recepción, desde que concurran dichas circunstancias se producirán los efectos y consecuencias propios del acto de recepción de la obra en los términos establecidos en el artículo 168 del RGLCAP.

Cláusula 39. Responsabilidad por vicios ocultos.

Si la obra se arruinara con posterioridad a la expiración del plazo de garantía, por vicios ocultos de la construcción, debido a incumplimiento del contrato por parte del contratista, responderá éste de los daños y perjuicios durante el término de quince años a contar desde la recepción.
Transcurrido este plazo sin que se haya manifestado ningún daño o perjuicio, quedará totalmente extinguida la responsabilidad del contratista.

Sección tercera. Prerrogativas de la Administración y Tribunales competentes

Cláusula 40. Prerrogativas de la Administración y Tribunales competentes.

De acuerdo con lo establecido en la cláusula primera del pliego, este contrato tiene carácter administrativo. El órgano de contratación tiene la facultad de resolver cuantas cuestiones se susciten durante la vigencia del mismo sobre su interpretación, modificación, efectos y extinción, dentro de los límites y con sujeción a los requisitos señalados en la ley.

Las resoluciones que dicte el órgano de contratación en el ejercicio de sus prerrogativas serán inmediatamente ejecutivas, poniendo fin a la vía administrativa. Contra éstas, podrá interponerse recurso de reposición en el plazo de un mes, contado a partir del siguiente al de notificación de la resolución o ser impugnado directamente ante la Jurisdicción Contencioso Administrativa.

POR LA ADMINISTRACIÓN, FECHA Y FIRMA

CONFORME:
Pliego de condiciones

EL ADJUDICATARIO

FECHA Y FIRMA
DOCUMENTO IV: PRESUPUESTO
Costes directos

Coste de los equipos de aireación:

<table>
<thead>
<tr>
<th>Nº UD</th>
<th>Descripción</th>
<th>PVP UD.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 UD.</td>
<td>Aireador modelo High Volume HV300 de 3 HP de potencia trifásico (380 V). Carcasa de acero inoxidable, motor de bajas revoluciones en baño de aceite.</td>
<td>4.306,95 €</td>
<td>25.841,70 €</td>
</tr>
<tr>
<td>1 UD.</td>
<td>Aireador modelo Aquablast de 1 HP de potencia monofásico (230 V).</td>
<td>1.119,70 €</td>
<td>1.119,70 €</td>
</tr>
<tr>
<td>4 UD.</td>
<td>Aireador de agua sumergido de aspiración horizontal Subtriton Mixer 100 de 1 HP de potencia monofásico (230 V)</td>
<td>1.336,50 €</td>
<td>5346 €</td>
</tr>
<tr>
<td>6 UD.</td>
<td>Cuadro eléctricos para motor 3 HP conteniendo los siguientes elementos:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Armario estanco</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Interruptor conmutado de 3 posiciones: apagado, encendido y automático</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Bornas entrada y salida</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Reloj para funcionamiento</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- automático</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Diferencial 300 mA 4 polos</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Interruptor general</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Magnetotérmico</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Contactor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Magnetotérmico 4 polos 15 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Relé térmico 9.5 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>373,72 €</td>
<td>2242,32 €</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 5 UD. | Cuadro eléctricos para motor 1 HP conteniendo los siguientes elementos:
| | - Armario estanco
| | - Interruptor conmutado de 3 posiciones: apagado, encendido y automático
| | - Bornas entrada y salida
| | - Reloj para funcionamiento automático
| | - Diferencial 300 mA 2 polos
| | - Interruptor general magnetotérmico
| | - Contactor
| | - Magnetotérmico 4 polos 10 A
| | - Relé térmico 8.5 A | 271,61 € | 1358,05 € |

<p>| 12 UD. | Dado de hormigón de 35 kg con elemento de sujección | p.a. | p.a. |</p>
<table>
<thead>
<tr>
<th></th>
<th>Dado de hormigón de 25 kg con elemento de sujeción</th>
<th>p.a.</th>
<th>p.a.</th>
</tr>
</thead>
</table>

Suma de costes directos por equipos de aireación: 35.907,77 €

16% IVA: 5.745,24 €

Subtotal: 41.653,01 €
Coste de la instalación de la tubería de lago norte y codo en el borbotón:

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>Descripción</th>
<th>PVP unidad</th>
<th>Total</th>
</tr>
</thead>
</table>
| 15 metros lineales | Tubería PVC
Diámetro nominal
200, presión nominal 6 atm | 12,91 € | 193.65 € |
| 3 | Codo 45° PVC
Diámetro nominal
200, presión nominal 10 bar | 92,17 € | 276.51 € |
| 1 | Codo 90° PVC
Diámetro nominal
200, presión nominal 10 bar | 79,83 € | 79,83 € |
| 1 | Tapón hembra | 30,41 € | 30,41 € |
Suma de costes directos por instalación de tuberías: 575,4 €

16% IVA: 92,06 €

Subtotal: 666,46 €

Resumen del capital estimado

Costes directos (C.D.):

Coste total de los equipos42.319,47 €
Mano de obra e instalación...............400 €

Total de costes directos....................42.719,47 €

Costes indirectos (C.I):

Coste de ingeniería (0,1 x C.D.).........4.271,95 €

Coste total: C.D. + C.I. = 46.991,42 €
El coste total de las “Propuestas para la mejora de la calidad del agua en el parque de los lagos de Costa Ballena” es de cuarenta y seis mil novecientos noventa y un euros con cuarenta y dos céntimos.
Costes de operación y mantenimiento:

Consumo eléctrico de aireadores:

6 Aireadores 3 CV: $0,061222 \text{ €/Kwh} \times 1,35 \text{ Kw} \times 8760 \text{ h/año} = 724.01 \text{ € anuales}

5 Aireadores 1 CV: $0,061222 \text{ €/Kw} \times 0,375 \text{ Kw} \times 8760 \text{ h/año} = 201.1 \text{ € anuales}

Reactivos empleados en análisis químicos de los lagos: 200 € anuales.

Retirada de lodos acumulados en el fondo de los lagos y canal:

Se estima una periodicidad de una vez cada 10 años, debiéndose incluir el coste de la operación en el presupuesto de ese año. La retirada la realizará una empresa especializada.
El coste de la retirada de 1 m3 de lodos se estima en 6 €, y el volumen a retirar en 11000 m3, por lo que el coste estimado será de 66000 €.

Coste total anual de operación: 1.125,11 €, sin incluir el coste de la evacuación de lodos.

FDO