Show simple item record

dc.contributor.authorOrtus, F.
dc.contributor.authorPardo, E.
dc.contributor.authorPerera, F.
dc.contributor.otherMatemáticasen_US
dc.date.accessioned2014-04-08T09:49:18Z
dc.date.available2014-04-08T09:49:18Z
dc.date.issued2005-01-01T00:00:00Z
dc.identifier.issn0021-8693
dc.identifier.otherDOI: 10.1016/j.jalgebra.2004.10.002
dc.identifier.urihttp://hdl.handle.net/10498/16076
dc.description.abstractWe prove that every partially ordered simple group of rank one which is not Riesz embeds into a simple Riesz group of rank one if and only if it is not isomorphic to the additive group of the rationals. Using this result, we construct examples of simple Riesz groups of rank one G , containing unbounded intervals (Dn)n⩾1(Dn)n⩾1 and D , that satisfy: (a) for each n⩾1n⩾1, tDn≠G+tDn≠G+ for every (t<qnt<qn), but qnDn=G+qnDn=G+ (where (qn)(qn) is a sequence of relatively prime integers); (b) for every n⩾1n⩾1, nD≠G+nD≠G+. We sketch some potential applications of these results in the context of K-theoryen_US
dc.formatapplication/pdf
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceJournal of Algebra 284 (2005), 111-140en_US
dc.subjectSimple Riesz groupen_US
dc.subjectIntervalen_US
dc.subjectC*C*-algebra of real rank zeroen_US
dc.titleSimple Riesz groups of rank one having wild intervalsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.identifier.doi10.1016/j.jalgebra.2004.10.002


Files in this item

This item appears in the following Collection(s)

Show simple item record