• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

K0 of purely infinite simple regular rings

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/16091

DOI: 10.1023/a:1016358107918

ISSN: 0920-3036

Files
AGP_final.pdf (425.3Kb)
Statistics
View statistics
Metrics and citations
 
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
Ara, P.; Goodearl, K.R.; Pardo, E.
Date
2002-01-01
Department
Matemáticas
Source
K-Theory 26 (2002), 69-100
Abstract
We extend the notion of a purely in nite simple C*-algebra to the context of unital rings, and we study its basic properties, specially those related to K-Theory. For instance, if R is a purely in nite simple ring, then K0(R)+ = K0(R), the monoid of isomorphism classes of nitely generated projective R-modules is isomorphic to the monoid obtained from K0(R) by adjoining a new zero element, and K1(R) is the abelianization of the group of units of R. We develop techniques of construction, obtaining new examples in this class in the case of von Neumann regular rings, and we compute the Grothendieck groups of these examples. In particular, we prove that every countable abelian group is isomorphic to K0 of some purely in nite simple regular ring. Finally, some known examples are analyzed within this framework.
Collections
  • Artículos Científicos [2988]
  • Articulos Científicos Matemáticas [77]

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestions