Show simple item record

dc.contributor.authorMárquez Lozano, Almudena del Pilar
dc.contributor.authorBruzón Gallego, María de los Santos
dc.contributor.otherMatemáticasen_US
dc.date.accessioned2019-09-27T10:19:22Z
dc.date.available2019-09-27T10:19:22Z
dc.date.issued2019-07
dc.identifier.issn2073-8994
dc.identifier.urihttp://hdl.handle.net/10498/21722
dc.description.abstractIn this paper, we study a generalization of the well-known Kelvin-Voigt viscoelasticity equation describing the mechanical behaviour of viscoelasticity. We perform a Lie symmetry analysis. Hence, we obtain the Lie point symmetries of the equation, allowing us to transform the partial differential equation into an ordinary differential equation by using the symmetry reductions. Furthermore, we determine the conservation laws of this equation by applying the multiplier method.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceSymmetry 2019, 11(7), 840en_US
dc.subjectviscoelasticityen_US
dc.subjectKelvin-Voigt equationen_US
dc.subjectLie symmetriesen_US
dc.subjectoptimal systemen_US
dc.subjectgroup-invariant solutionsen_US
dc.subjectconservation lawsen_US
dc.subjectmultiplier methoden_US
dc.titleSymmetry Analysis and Conservation Laws of a Generalization of the Kelvin-Voigt Viscoelasticity Equationen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.identifier.doi10.3390/sym11070840


Files in this item

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
This work is under a Creative Commons License Atribución 4.0 Internacional