dc.contributor.author | Márquez Lozano, Almudena del Pilar | |
dc.contributor.author | Bruzón Gallego, María de los Santos | |
dc.contributor.other | Matemáticas | en_US |
dc.date.accessioned | 2019-09-27T10:19:22Z | |
dc.date.available | 2019-09-27T10:19:22Z | |
dc.date.issued | 2019-07 | |
dc.identifier.issn | 2073-8994 | |
dc.identifier.uri | http://hdl.handle.net/10498/21722 | |
dc.description.abstract | In this paper, we study a generalization of the well-known Kelvin-Voigt viscoelasticity
equation describing the mechanical behaviour of viscoelasticity. We perform a Lie symmetry analysis.
Hence, we obtain the Lie point symmetries of the equation, allowing us to transform the partial
differential equation into an ordinary differential equation by using the symmetry reductions.
Furthermore, we determine the conservation laws of this equation by applying the multiplier method. | en_US |
dc.format | application/pdf | en_US |
dc.language.iso | eng | en_US |
dc.publisher | MDPI | en_US |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.source | Symmetry 2019, 11(7), 840 | en_US |
dc.subject | viscoelasticity | en_US |
dc.subject | Kelvin-Voigt equation | en_US |
dc.subject | Lie symmetries | en_US |
dc.subject | optimal system | en_US |
dc.subject | group-invariant solutions | en_US |
dc.subject | conservation laws | en_US |
dc.subject | multiplier method | en_US |
dc.title | Symmetry Analysis and Conservation Laws of a Generalization of the Kelvin-Voigt Viscoelasticity Equation | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en_US |
dc.identifier.doi | 10.3390/sym11070840 | |