Show simple item record

dc.contributor.authorRuiz-Garzón, Gabriel
dc.contributor.authorOsuna-Gómez, Rafaela
dc.contributor.authorRuiz-Zapatero, Jaime
dc.contributor.otherEstadística e Investigación Operativaen_US
dc.date.accessioned2019-10-02T07:04:25Z
dc.date.available2019-10-02T07:04:25Z
dc.date.issued2019-08
dc.identifier.issn2073-8994
dc.identifier.urihttp://hdl.handle.net/10498/21743
dc.description.abstractThe aim of this paper is to show the existence and attainability of Karush–Kuhn–Tucker optimality conditions for weakly efficient Pareto points for vector equilibrium problems with the addition of constraints in the novel context of Hadamard manifolds, as opposed to the classical examples of Banach, normed or Hausdorff spaces. More specifically, classical necessary and sufficient conditions for weakly efficient Pareto points to the constrained vector optimization problem are presented. The results described in this article generalize results obtained by Gong (2008) andWei and Gong (2010) and Feng and Qiu (2014) from Hausdorff topological vector spaces, real normed spaces, and real Banach spaces to Hadamard manifolds, respectively. This is done using a notion of Riemannian symmetric spaces of a noncompact type as special Hadarmard manifolds.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceSymmetry 2019, 11(8), 1037en_US
dc.subjectvector equilibrium problemen_US
dc.subjectgeneralized convexityen_US
dc.subjecthadamard manifoldsen_US
dc.subjectweakly efficient pareto pointsen_US
dc.titleNecessary and Sufficient Optimality Conditions for Vector Equilibrium Problems on Hadamard Manifoldsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.identifier.doi10.3390/sym11081037


Files in this item

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
This work is under a Creative Commons License Atribución 4.0 Internacional