Show simple item record

dc.contributor.authorRisch, A. C.
dc.contributor.authorZimmermann, S.
dc.contributor.authorOchoa-Hueso, Raúl
dc.contributor.authorSchutz, M.
dc.contributor.authorFrey, B.
dc.contributor.authorFirn, F.L.
dc.contributor.authorFay, P. A.
dc.contributor.authorHagedorn, F.
dc.contributor.authorBorer, E.T.
dc.contributor.authorSeabloom, E.W.
dc.contributor.authorHarpole, W.S.
dc.contributor.authorKnops, J.M.H.
dc.contributor.authorMcCulley, R.L.
dc.contributor.authorBroadbent, A.A.D.
dc.contributor.authorStevens, C.J.
dc.contributor.authorSilveira, M.L.
dc.contributor.authorAdler, P.B.
dc.contributor.authorBaez, S.
dc.contributor.authorBiederman, L.A.
dc.contributor.authorBlair, JM
dc.contributor.authorBrown, C.S.
dc.contributor.authorCaldeira, M.C.
dc.contributor.authorCollins, S.L.
dc.contributor.authorDaleo, P.
dc.contributor.authordi Virgilio, A.
dc.contributor.authorEbeling, A.
dc.contributor.authorEisenhauer, N.
dc.contributor.authorEsch, E.
dc.contributor.authorEskelinen, A.
dc.contributor.authorHagenah, N.
dc.contributor.authorHautier, Y.
dc.contributor.authorKirkman, K.P.
dc.contributor.authorMacDougall, A.S.
dc.contributor.authorMoore, J.L.
dc.contributor.authorPower, S. A.
dc.contributor.authorProber, S.M.
dc.contributor.authorRoscher, C.
dc.contributor.authorSankaran, M.
dc.contributor.authorSiebert, J.
dc.contributor.authorSpeziale, K.L.
dc.contributor.authorTognetti, P.M.
dc.contributor.authorVirtanen, R.
dc.contributor.authorYahdjian, L.
dc.contributor.authorMoser, B.
dc.contributor.otherBiologíaen_US
dc.date.accessioned2019-11-14T10:41:54Z
dc.date.available2019-11-14T10:41:54Z
dc.date.issued2019-10
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/10498/21899
dc.description.abstractSoil nitrogen mineralisation (N-min), the conversion of organic into inorganic N, is important for productivity and nutrient cycling. The balance between mineralisation and immobilisation (net N-min) varies with soil properties and climate. However, because most global-scale assessments of net N-min are laboratory-based, its regulation under field-conditions and implications for real-world soil functioning remain uncertain. Here, we explore the drivers of realised (field) and potential (laboratory) soil net N-min across 30 grasslands worldwide. We find that realised N-min is largely explained by temperature of the wettest quarter, microbial biomass, clay content and bulk density. Potential N-min only weakly correlates with realised N-min, but contributes to explain realised net N-min when combined with soil and climatic variables. We provide novel insights of global realised soil net N-min and show that potential soil net N-min data available in the literature could be parameterised with soil and climate data to better predict realised N-min.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.publisherNATURE PUBLISHING GROUPen_US
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourceNature Communications volume 10, Article number: 4981 (2019)en_US
dc.titleSoil net nitrogen mineralisation across global grasslandsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US
dc.identifier.doi10.1038/s41467-019-12948-2


Files in this item

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
This work is under a Creative Commons License Atribución 4.0 Internacional