• español
    • English
  • Login
  • English 
    • español
    • English

UniversidaddeCádiz

Área de Biblioteca, Archivo y Publicaciones
Communities and Collections
View Item 
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
  •   RODIN Home
  • Producción Científica
  • Artículos Científicos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Regularity in Topological Modules

Thumbnail
Identificadores

URI: http://hdl.handle.net/10498/23994

DOI: 10.3390/math8091580

ISSN: 2227-7390

Files
2020_551.pdf (320.4Kb)
Statistics
View statistics
Metrics and citations
 
Share
Export
Export reference to MendeleyRefworksEndNoteBibTexRIS
Metadata
Show full item record
Author/s
García-Pacheco, Francisco Javier
Date
2020-09
Department
Matemáticas
Source
Mathematics 2020, 8(9), 1580
Abstract
The framework of Functional Analysis is the theory of topological vector spaces over the real or complex field. The natural generalization of these objects are the topological modules over topological rings. Weakening the classical Functional Analysis results towards the scope of topological modules is a relatively new trend that has enriched the literature of Functional Analysis with deeper classical results as well as with pathological phenomena. Following this trend, it has been recently proved that every real or complex Hausdorff locally convex topological vector space with dimension greater than or equal to 2 has a balanced and absorbing subset with empty interior. Here we propose an extension of this result to topological modules over topological rings. A sufficient condition is provided to accomplish this extension. This sufficient condition is a new property in topological module theory calledstrong open property. On the other hand, topological regularity of closed balls and open balls in real or complex normed spaces is a trivial fact. Sufficient conditions, related to the strong open property, are provided on seminormed modules over an absolutely semivalued ring for closed balls to be regular closed and open balls to be regular open. These sufficient conditions are in fact characterizations when the seminormed module is the absolutely semivalued ring. These characterizations allow the provision of more examples of closed-unit neighborhoods of zero. Consequently, the closed-unit ball of any unital real Banach algebra is proved to be a closed-unit zero-neighborhood. We finally transport all these results to topological modules over topological rings to obtain nontrivial regular closed and regular open neighborhoods of zero. In particular, ifMis a topologicalR-module and m* is an element of M* is a continuous linear functional on M which is open as a map between topological spaces, then m*-1(int(B)) is regular open and m*-1(B) is regular closed, for B any closed-unit zero-neighborhood in R.
Subjects
topological module; topological ring; normed module; absolutely valued ring; regular closed set; regular open set; closed-unit neighborhood of zero
Collections
  • Artículos Científicos [3026]
  • Articulos Científicos Matemáticas [78]
Atribución 4.0 Internacional
This work is under a Creative Commons License Atribución 4.0 Internacional

Browse

All of RODINCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

Statistics

View Usage Statistics

Información adicional

AboutDeposit in RODINPoliciesGuidelinesRightsLinksStatisticsNewsFrequently Asked Questions

RODIN is available through

OpenAIREOAIsterRecolectaHispanaEuropeanaBaseDARTOATDGoogle Academic

Related links

Sherpa/RomeoDulcineaROAROpenDOARCreative CommonsORCID

RODIN está gestionado por el Área de Biblioteca, Archivo y Publicaciones de la Universidad de Cádiz

Contact informationSuggestions