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Abstract: In this work, we study a generalised (2 + 1) equation of the Zakharov–Kuznetsov
(ZK)(m, n, k) equation involving three arbitrary functions. From the point of view of the Lie symmetry
theory, we have derived all Lie symmetries of this equation depending on the arbitrary functions.
Line soliton solutions have also been obtained. Moreover, we study the low-order conservation
laws by applying the multiplier method. This family of equations is rich in Lie symmetries and
conservation laws. Finally, when the equation is expressed in potential form, it admits a variational
structure in the case when two of the arbitrary functions are linear. In addition, the corresponding
Hamiltonian formulation is presented.

Keywords: ZK equations; Lie symmetries; conservation laws

1. Introduction

In the context of plasma physics, the Zakharov–Kuznetsov equation (ZK) arises to describe
ion-sound waves propagating along the magnetic field [1]. Its formal derivation involves the
Euler–Poisson system for uniformly magnetised plasmas [2]. The two-dimensional ZK equation
has the form

ut + u∂xu + ∂x∆u = 0, u = u(t, x, y). (1)

The ZK equation describes the behaviour of weakly nonlinear ion-acoustic waves in plasma
comprising cold ions and hot isothermal electrons in a uniform magnetic field. It generalised the
well-known Korteweg de Vries (KdV) equation, it is not completely integrable and has a Hamiltonian.

There are several papers in which different generalisations of Equation (1), in two and three
dimensions, have been studied. We shall now proceed to show some well-known generalised ZK
equations in (2 + 1)-dimensions:

• The modified Zakharov–Kuznetsov equation [3–5]

ut + aun/2ux +
(
uxx + uyy

)
x = 0, (2)

where a 6= 0 and n ≥ 1 are arbitrary constants.
• The ZK(m, n, k)

ut + a(um)x + b(un)xxx + c(uk)yyx = 0, (3)

where a, b, c are arbitrary constants while m, n and k are positive integers [6–8].
• ZK(m, n, k) equation with generalised evolution and time-dependent coefficients

(ul)t + a(t)(um)x + b(t)(un)xxx + c(t)(uk)yyx = α(t)ul , (4)
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where a(t), b(t), c(t), α(t) are time-dependent coefficients and m, n, k, l are integers [9,10].

In the present paper, we are interested in studying a generalised ZK equation involving arbitrary
functions. The simplest generalization would be

ut + u∂x f (u) + ∂x∆g(u) = 0. (5)

In the previous Equation (5), ∂x∆g(u) represents the dispersion term, with the same dispersion
effect for directions x and y. However, in order to get a more general classification, we consider the
case in which the dispersion effect could be different in the two directions.

Therefore, we study the following (2+ 1)-dimensional generalised Zakharov–Kuznetsov equation
involving three arbitrary functions (gZK)

ut + f (u)x + g(u)xxx + h(u)yyx = 0, (6)

where f (u), g(u) and h(u) are nonzero arbitrary functions.
When functions f , g and h are p-power nonlinearities, it was proved that the equation admits new

solitary pattern, solitary wave and singular solitary wave solutions. Moreover, the authors proved a
theorem on the convergence of the homotopy analysis method to solve this equation [11].

Due to the physical background of the equation, the objectives of this work are twofold. First,
we seek point symmetries of Equation (6). Symmetries of a partial differential equation (PDE) leave
invariant the whole space of solutions of the equation and, in that way, symmetries can be used to obtain
reductions and exact group-invariant solutions. The Lie method determines all the Lie symmetries that
a given PDE admits [12–15]. Moreover, for different cases of the ZK Equation (2)–(4), the Lie method
has been shown as a useful tool to get exact solutions, including soliton solutions, cnoidal waves and
travelling wave solutions [16–19]. In Section 3, line soliton solutions have been obtained.

Second, we aim to study the conservation laws of the gZK Equation (6) with physical interest.
Conservation laws provide basic conserved quantities for all solutions, such as, mass, energy and
so on. By using the multiplier method [20–22], we find all local conservation laws admitted by gZK
Equation (6). Conservation laws for some special cases of the previous Equations (2)–(4) can be found
in [23–25]. Consequently, the study of conservation laws of Equation (6) is also motivated to determine
special cases for the arbitrary functions, f , g and h, with extra conservation laws.

Finally, making use of the fact that an equation admits a variational structure if and only if the
Frechet derivative of the equation is self-adjoint (i.e., the Helmholtz conditions hold) [15,22], we present
the case for the arbitrary functions f , g and h when the potential form of the gZK Equation (6)
possesses a variational structure and we write the associated Hamiltonian formulation for the gZK
Equation (6). Next, we determine the variational symmetries of the potential equation admitting the
variational structure.

2. Lie Symmetries

We apply the Lie method to the two-dimensional gZK Equation (6). Therefore, we consider a
one-parameter Lie group of point transformations acting on independent and dependent variables

t̃ = t + ετ(t, x, y, u) +O(ε2),
x̃ = x + εξ1(t, x, y, u) +O(ε2),

ỹ = y + εξ2(t, x, y, u) +O(ε2),

ũ = u + εη(t, x, y, u) +O(ε2),

(7)

where ε is the group parameter. A Lie point symmetry for Equation (6) is a transformation (7) that
leaves (6) invariant. From (7) one can obtain the associated vector field which is given by
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X = τ(t, x, y, u)∂t + ξ1(t, x, y, u)∂x + ξ2(t, x, y, u)∂y + η(t, x, y, u)∂u. (8)

A generator (8) is a point symmetry of gZK Equation (6) if

X(3)
(

ut + f (u)x + g(u)xxx + h(u)yyx

)
= 0 (9)

when Equation (6) holds. Here, X(3) is the third prolongation of the vector field (8) defined by

X(3) = X + η
(1)
i1

∂

∂ui1
+ η

(2)
i1i2

∂

∂ui1i2
+ η

(3)
i1i2i3

∂

∂ui1i2i3
,

with coefficients

η
(1)
i1

= Di1(η)− utDi1(τ)− uxDi1(ξ1)− uyDi1(ξ2),

η
(2)
i1i2

= Di2(η
(1)
i1

)− ui1tDi2(τ)− ui1xDi2(ξ1)− ui1yDi2(ξ2),

η
(3)
i1i2i3

= Di3(η
(2)
i1i2

)− ui1i2tDi3(τ)− ui1i2xDi3(ξ1)− ui1i2yDi3(ξ2),

where D is the total derivative operator, ui = ∂u
∂xi

, i = 1, 2, 3 with x1 = t, x2 = x and x3 = y,
and ij = 1, 2, 3 for j = 1, 2, 3.

Invariance condition (9) can be expanded and split with respect to the derivatives of u obtaining an
overdetermined linear system of equations for the infinitesimals τ(t, x, y, u), ξ1(t, x, y, u), ξ2(t, x, y, u),
η(t, x, y, u) along with the arbitrary functions f (u), g(u) and h(u). Thus we have the following result:

Theorem 1. The classification of point symmetries admitted by the (2 + 1)-dimensional generalised
Zakharov–Kuznetsov Equation (6) is given by the following cases:

(i) For arbitrary f (u), g(u) and h(u), the admitted point symmetries are generated by:

X1 = ∂t,
time-translation.

X2 = ∂x,
space-translation.

X3 = ∂y,
space-translation.

(ii) Additional point symmetries are admitted by the (2 + 1)-dimensional generalised ZK Equation (6) in the
following cases:

• For arbitrary g(u), h(u), and f (u) = f1u + f2, there is an extra generator:

X4 = 3t∂t + (2 f1t + x) ∂x + y∂y,
dilation combined with a Galilean boost.

• For f (u) = f1(u + a)m + f2u + f3, g(u) = g1(u + a)n + g2 and h(u) = h1(u + a)q + h2, the
additional symmetry is

X5 = (3m− n− 2)t∂t + (2 f2(m− 1)t + (m− n)x) ∂x + (m− q)y∂y − 2(u + a)∂u,
shift combined with a scaling and a Galilean boost.

Moreover:
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– For m = 1 and f2 = 0, generator X4 is also admitted.

– For m = 2, n = q = 1, a = 0, the following generator is admitted

X6 = 2 f1t∂x + ∂u,
Galilean boost

– For n = 1, m = q = −1
3

and
f1

h1
> 0, two additional generators are admitted

X7 =

(
2 cos2

(√
f1
h1

y
)
− 1
)

∂y + 3
√

f1
h1

sin
(

2
√

f1
h1

y
)
(u + a)∂u,

X8 = sin
(

2
√

f1
h1

y
)

∂y − 3
√

f1
h1

(
2 cos2

(√
f1
h1

y
)
− 1
)
(u + a)∂u.

– For n = 1, m = q = −1
3

and
f1

h1
< 0, two additional generators are admitted

X9 = exp
(

2
√
− f1

h1
y
)(

∂y − 3
√
− f1

h1
(u + a)∂u

)
,

X10 = exp
(
−2
√
− f1

h1
y
)(

∂y + 3
√
− f1

h1
(u + a)∂u

)
.

• For f (u) = f1(u + a)m + f2u + f3, g(u) = g1 ln(u + a) + g2, and h(u) = h1(u + a)q + h2,

X5|n=0 = (3m− 2)t∂t + (2 f2(m− 1)t + mx) ∂x + (m− q)y∂y − 2(u + a)∂u,
shift combined with a scaling and a Galilean boost.

Moreover, for m = 1 and f2 = 0, X4 is also admitted.

• For f (u) = f1(u + a)m + f2u + f3, g(u) = g1(u + a)n + g2 and h(u) = h1 ln(u + a) + h2

X5|q=0 = (3m− n− 2)t∂t + (2 f2(m− 1)t + (m− n)x) ∂x + my∂y − 2(u + a)∂u,
shift combined with a scaling and a Galilean boost.

As before, for m = 1 and f2 = 0, X4 is admitted.

• For f (u) = f1(u + a)m + f2u + f3, g(u) = g1 ln(u + a) + g2 and h(u) = h1 ln(u + a) + h2

X5|n=q=0 = (3m− 2)t∂t + (2 f2(m− 1)t + mx) ∂x + my∂y − 2(u + a)∂u,
shift combined with a scaling and a Galilean boost.

Moreover, for m = 1 and f2 = 0, X4 is admitted.

• For f (u) = f1 ln(u + a) + f2u + f3, g(u) = g1(u + a)n + g2 and h(u) = h1(u + a)q + h2

X5|m=0 = (n + 2)t∂t + (2 f2t + nx) ∂x + qy∂y + 2(u + a)∂u,
shift combined with a scaling and a Galilean boost.

• For f (u) = f1 ln(u + a) + f2u + f3, g(u) = g1 ln(u + a) + g2 and h(u) = h1(u + a)q + h2

X5|m=n=0 = 2t∂t + 2 f2t∂x + qy∂y + 2(u + a)∂u,
shift combined with a scaling and a Galilean boost.
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• For f (u) = f1 ln(u + a) + f2u + f3, g(u) = g1(u + a)n + g2 and h(u) = h1 ln(u + a) + h2

X5|m=q=0 = (n + 2)t∂t + (2 f2t + nx) ∂x + 2(u + a)∂u,
shift combined with a scaling and a Galilean boost.

• For f (u) = f1 ln(u + a) + f2u + f3, g(u) = g1 ln(u + a) + g2 and h(u) = h1 ln(u + a) + h2

X5|m=n=q=0 = t∂t + f2t∂x + (u + a)∂u,
shift combined with a scaling and a Galilean boost.

• For f (u) = f1(u + a) (ln(u + a)− 1) + f2u + f3, g(u) = g1(u + a)n + g2 and h(u) = h1(u +

a)q + h2

X11 = (n− 1)t∂t + (2 f1t + (n− 1)x) ∂x + (q− 1)y∂y + 2(u + a)∂u,
shift combined with a scaling and a Galilean boost.

• For f (u) = f1(u + a) (ln(u + a)− 1) + f2u + f3, g(u) = g1 ln(u + a) + g2 and h(u) = h1(u +

a)q + h2
X11|n=0 = −t∂t + (2 f1t− x) ∂x + (q− 1)y∂y + 2(u + a)∂u,
shift combined with a scaling and a Galilean boost.

• For f (u) = f1(u+ a) (ln(u + a)− 1) + f2u+ f3, g(u) = g1(u+ a)n + g2 and h(u) = h1 ln(u+

a) + h2
X11|q=0 = (n− 1)t∂t + (2 f1t + (n− 1)x) ∂x − y∂y + 2(u + a)∂u,
shift combined with a scaling and a Galilean boost.

• For f (u) = f1(u + a) (ln(u + a)− 1) + f2u + f3, g(u) = g1 ln(u + a) + g2 and h(u) =

h1 ln(u + a) + h2

X11|n=q=0 = −t∂t + (2 f1t− x) ∂x − y∂y + 2(u + a)∂u,
shift combined with a scaling and a Galilean boost.

• For f (u) = f1emu + f2u + f3, g(u) = g1enu + g2 and h(u) = h1equ + h2

X12 = (3m− n)t∂t + (2m f2t + (m− n)x) ∂x + (m− q)y∂y − 2∂u,
dilation combined with a Galilean boost.

• For f (u) = f1emu + f2u + f3, g(u) = g1u + g2 and h(u) = h1equ + h2

X12|n=0 = 3mt∂t + m (2 f2t + x) ∂x + (m− q)y∂y − 2∂u,
dilation combined with a Galilean boost.

• For f (u) = f1emu + f2u + f3, g(u) = g1enu + g2 and h(u) = h1u + h2

X12|q=0 = (3m− n)t∂t + (2m f2t + (m− n)x) ∂x + my∂y − 2∂u,
dilation combined with a Galilean boost.

• For f (u) = f1emu + f2u + f3, g(u) = g1u + g2 and h(u) = h1u + h2

X12|n=q=0 = 3mt∂t + m (2 f2t + x) ∂x + my∂y − 2∂u,
dilation combined with a Galilean boost.

In the above, f1 6= 0, f2, f3, g1 6= 0, g2, h1 6= 0, h2, a, m 6= 0, n 6= 0 and q 6= 0 are arbitrary constants.
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3. Line Soliton Solution

A line soliton solution
u(t, x, y) = w(x + µy− λt), (10)

is a travelling wave solution of the form u(t, x, y) = w (K · x− λt) with x = (x, y) and K = (1, µ).
The solution depends on two parameters, where µ represents the direction of propagation of the line
soliton, i.e., the inclination of the line soliton in the (x, y)-plane is µ = tan α, with α the angle from the
positive y-axis in counterclockwise direction; whereas c = λ

|K| =
λ

1+µ2 represents the speed of the wave.

In this section, we will determine line soliton solutions for the (2 + 1)-dimensional generalised
Zakharov–Kuznetsov Equation (6). Taking into account the line soliton formulation (10) into
Equation (6) we obtain the nonlinear third-order ODE(

µ2h′(w) + g′(w)
)

w′′′(z) + 3
(
µ2h′′(w) + g′′(w)

)
w′(z)w′′(z)

+
(
µ2h′′′(w) + g′′′(w)

)
(w′(z))3 + ( f ′(w)− λ)w′(z) = 0,

(11)

where z = x + µy− λt. Integrating Equation (11) with respect to z we obtain(
µ2h′(w) + g′(w)

)
w′′(z) +

(
µ2h′′(w) + g′′(w)

)
(w′(z))2 + f (w)− λw = 0, (12)

omitting the constant of integration. We recall that we are interested in a solitary wave solution,
therefore we impose w, w′, w′′ −→ 0 as z −→ ±∞. On the other hand, if one considers f (w) = λw,
g(w) = −µ2h(w), Equation (12) is solved. Thus, it is obvious that

u(t, x, y) = a sechm (b(x + µy− λt)) , (13)

with m, a and b nonzero arbitrary constants, is a smooth solution of Equation (6) for f (u) = λu,
g(u) = −µ2h(u) satisfying the desired asymptotic conditions.

In [9], the authors proved the existence of solitary wave solutions for Equation (6) with f (u), g(u)
and h(u) power functions. As far as we are concerned, line soliton solutions given by (13) have not
been previously obtained.

4. Conservation Laws

We apply the direct method of the multipliers in order to obtain conservation laws of the
(2 + 1)-dimensional generalised Zakharov–Kuznetsov equation with three arbitrary functions (6).

In two dimensions, a local conservation law is a divergence expression of the form

DtT + DxX + DyY = 0 (14)

that holds for the whole set of solutions u(t, x, y).
T is called conserved density, and X, Y are spatial fluxes. The three are functions depending on

t, x, y, u and spatial derivatives of u because, by using the equation, time derivatives can be vanished.
A conserved current is an expression (T, X, Y).

Every non-trivial local conservation law (14) for Equation (6) can be expressed in its
characteristic form

DtT + DxX + DyY =
(

ut + f (u)x + g(u)xxx + h(u)yyx

)
Q, (15)

where
Q =

δT
δu

(16)
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is the so called multiplier. Solving the following system of determining equations

δ

δh

((
ut + f (u)x + g(u)xxx + h(u)yyx

)
Q
)
= 0, (17)

that holds off the set of solutions of Equation (6), all multipliers Q can be found.
All non-trivial conservation laws arise from multipliers (16). Moreover, as conservation laws

of physical importance come from low-order multipliers, we have considered multipliers of the
form Q(t, x, y, u, ux, uy, uxx, uyy). Similarly to Lie symmetries, here the determining Equation (17) for
low-order multipliers splits with respect to ut, uxxx, uxyy and their differential consequences, yielding
an overdetermined system of equations for Q and the arbitrary functions which Equation (6) involves.

Once the multipliers are found, the corresponding non-trivial local conservation laws can be
obtained by integrating the characteristic Equation (15).

Theorem 2. All low-order conservation laws of the (2 + 1)-dimensional gZK Equation (6) are

(i) For arbitrary f (u), g(u) and h(u), there is one multiplier Q1 = F(u) of which the conservation law is

T1 = F (y) u,

X1 = F (y) guuux
2 +

(
d2

dy2 F (y)
)

h (u) + F (y) (guuxx + f (u)) ,

Y1 = F (y) huuxy + F (y) huuuxuy −
(

d
dy F (y)

)
huux.

(18)

(ii) Additional conservation laws are admitted in the following cases:

• For arbitrary h(u), f (u) = f1 h (u) + f2 u + f3, and g(u) = g1u + g2, there are seven extra
multipliers.

– For the multiplier Q2 = e
√
− f1y,

T2 = e
√
− f1yu,

X2 = e
√
− f1y (−hu

√
− f1uy + f1 h (u) + f2 u + g1 uxx

)
,

Y2 = e
√
− f1y (huuuxuy + huuxy

)
.

(19)

– For the multiplier Q3 = e−
√
− f1y,

T3 = e−
√
− f1yu,

X3 =
(
hu
√
− f1uy + f1 h (u) + f2 u + g1 uxx

)
e−
√
− f1y,

Y3 =
(
huuuxuy + huuxy

)
e−
√
− f1y.

(20)

– For the multiplier Q4 =
e
√
− f1y√g1√

f2
sin
(√

f2x√
g1

)
,

T4 =
e
√
− f1y√g1u√

f2
sin
(√

f2x√
g1

)
,

X4 = − e
√
− f1y√

f2

((√
g1
√
− f1huuy −

√
g1h (u) f1 − g1

3/2uxx

)
sin
(√

f2x√
g1

)
+ cos

(√
f2x√
g1

)√
f2g1 ux

)
,

Y4 = e
√
− f1y√

f2

(
√

g1
(
huuuxuy + huuxy

)
sin
(√

f2x√
g1

))
+ cos

(√
f2x√
g1

)
h (u)

√
f2
√
− f1

)
.

(21)
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– For the multiplier Q5 =
√

g1√
f2e
√
− f1y

sin
(√

f2x√
g1

)
,

T5 =
√

g1e−
√
− f1yu√

f2
sin
(√

f2x√
g1

)
,

X5 = − e−
√
− f1y√
f2

((
−√g1

√
− f1huuy −

√
g1h (u) f1 − g1

3/2uxx

)
sin
(√

f2x√
g1

)
+ cos

(√
f2x√
g1

)√
f2g1 ux

)
,

Y5 = − e−
√
− f1y√
f2

(
−√g1

(
huuuxuy + huuxy

)
sin
(√

f2x√
g1

)
+ cos

(√
f2x√
g1

)
h (u)

√
f2
√
− f1

)
.

(22)

– For the multiplier Q6 = −
√

g1√
f2e
√
− f1y

cos
(√

f2x√
g1

)
,

T6 = −
√

g1e−
√
− f1yu√

f2
cos

(√
f2x√
g1

)
,

X6 = − e−
√
− f1y√
f2

((√
g1
√
− f1huuy +

√
g1h (u) f1 + g1

3/2uxx

)
cos

(√
f2x√
g1

)
+g1 sin

(√
f2x√
g1

)
ux
√

f2

)
,

Y6 = − e−
√
− f1y√
f2

(
√

g1
(
huuuxuy + huuxy

)
cos

(√
f2x√
g1

)
+ sin

(√
f2x√
g1

)√
− f1h (u)

√
f2

)
.

(23)

– For the multiplier Q7 = − e
√
− f1y√g1√

f2
cos

(√
f2x√
g1

)
,

T7 = − e
√
− f1y√g1u√

f2
cos

(√
f2x√
g1

)
,

X7 = − e
√
− f1y√

f2

((
−√g1

√
− f1huuy +

√
g1h (u) f1 + g1

3/2uxx

)
cos

(√
f2x√
g1

)
+g1 sin

(√
f2x√
g1

)
ux
√

f2

)
,

Y7 = e
√
− f1y√

f2

(
−√g1

(
huuuxuy + huuxy

)
cos

(√
f2x√
g1

)
+ sin

(√
f2x√
g1

)√
− f1h (u)

√
f2

)
.

(24)

– For the multiplier Q8 =

((
e
√
− f1y

)2
+1
)
(t f2−x)

e
√
− f1y f2

,

T8 = 1
f 2

u
(

e−
√
− f1y + e

√
− f1y

)
(t f2 − x) ,

X8 = 1
f 2

((
huuy (t f2 − x)

√
− f1 + f1 (t f2 − x) h (u)

+ f2
2tu + (g1 tuxx − xu) f2 − g1 (xuxx − ux)

)
e−
√
− f1y

+e
√
− f1y (−huuy (t f2 − x)

√
− f1 + f1 (t f2 − x) h (u)

+ f2
2tu + (g1 tuxx − xu) f2 − g1 (xuxx − ux)

))
,

Y8 = 1
f 2

((√
− f1h (u) +

(
huuuxuy + huuxy

)
(t f2 − x)

)
e−
√
− f1y

+
(
−
√
−a1h (u) +

(
huuuxuy + huuxy

)
(t f2 − x)

)
e
√
− f1y

)
.

(25)
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• For arbitrary f (u), h(u), and g(u) = g1 + g2h (u), there is an additional multiplier Q9 = h (u),
whose associated conservation law is

T9 =
∫

h (u) du,
X9 =

∫
h (u) fu du + h (u) huug2 ux

2 + 1
2
(
−g2 ux

2 − uy
2) h2

u
+h (u) hug2 uxx,

Y9 = h (u)
(
huuuxuy + huuxy

)
.

(26)

• For arbitrary h(u), f (u) = f1 h (u) + f2 u + f3, and g(u) = g1 + g2 h (u), the multiplier is

Q10 = −4
√−g2k1ek1y

4 k1
2 + f1

e
−1/4

√
−g2 f1 f2 t

g2 k1 e

√
−g2k1x

g2 e
1/4
√
−g2 f1 x
g2 k1 e

−1/4 y f1
k1

(
e

√
−g2k1 f2 t

g2

)−1

,

and its associated conservation law is

T10 = −4
√−g2k1u
4 k2

1+ f1
e

1/4
−y(−4 k1

2+ f1)
√
−g2+(4 k1

2+ f1)(t f2−x)√
−g2_c1 ,

X10 = 16
16 _c1

3+4 f1 k1

(
k1

(
huux

(
k1

2 + f1/4
)√−g2 − k1

2ux
2g2 huu

+k1

(
uyk1

2 − k1g2uxx − 1/4 uy f1

)
hu +

(
k2

1 − f1/4
)2 h (u)

−k2
1 f2 u)

√−g2e
1/4

−y(−4 k1
2+ f1)

√
−g2+(4 k1

2+ f1)(t f2−x)√
−g2k1 ),

Y10 = 4
4 k3

1+ f1 k1

(
−k1

2 (huuuxuy + huuxy
)√−g2

+h (u)
(

k1
4 − 1/16 f1

2
)

e
1/4

−y(−4 k1
2+ f1)

√
−g2+(4 k1

2+ f1)(t f2−x)√
−g2k1

)
.

(27)

• For f (u) = f3 + f2 u + f1 eh2u, g(u) = g2 + g1 eh2u, and h(u) = h1 eh2u + h3, there are three
multipliers.

– For the multiplier Q11 = eh2u,

T11 = eh2u

h2
,

X11 = 1
2

eh2u(((b1 ux
2−h1 uy

2)h2
2+2 g1 h2 uxx+ f1)h2 euh2+2 f2)

h2
,

Y11 = e2 h2uh1 h2
(
h2 uxuy + uxy

)
.

(28)

– For the multiplier Q12 = t f1 h2 eh2u+t f2−x
f1h2

,

T12 =
teh2u f1+u(t f2−x)

f1 h2
,

X12 = 1
2 f1h2

(
−th2 f1

((
−g1ux

2 + h1uy
2) h2

2 − 2g1h2uxx − f1

)
e2h2u

+
(

2g1ux
2 (t f2 − x) h2

2 + 2g1 ( f2tuxx − xuxx + ux) h2 + 4 f1
(
t f2 − x

2
))

eh2u

+2 f2u (t f2 − x)) ,

Y12 = h1
f1

eh2u
(

t f1 c2 eh2u + t f2 − x
) (

h2 uxuy + uxy
)

.

(29)

– For the multiplier

Q13 = 4 g1 h1 k1ek1y√
−g1 h1(4 k1

2h1+ f1)
e

k1
√
−g1 h1x
g1 e

−1/4
√
−g1 h1 f1 f2 t

g1 h1 k1 e
1/4
√
−g1 h1 f1 x
g1 h1 k1 e

−1/4 y f1
h1 k1(

e
k1
√
−g1 h1 f2 t

g1

)−1 ,
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T13 = 4 g1 h1 k1u√
−g1 h1(4 k1

2h1+ f1)
e1/4

−(4 k1
2h1+ f1)(t f2−x)

√
−g1 h1−yg1 (−4 k1

2h1+ f1)
g1 h1 k1 ,

X13 = 16 1√
−g1 h1(16 h1 k1

3+4 f1 k1)
g1

(
−k1

(
k1

2h1 + f1/4
)

eh2uuxh2
√
−g1 h1

+
(
−h1

2k4
1 − h1

2h2 k1
3uy + h1

(
g1 h2 uxx + g1 h2

2ux
2 + f1/2

)
k1

2

+1/4 f1 h1 h2 k1uy − 1/16 f1
2
)

eh2u + f2 h1 k2
1u
)

e1/4
−(4 k1

2h1+ f1)(t f2−x)
√
−g1 h1−yg1 (−4 k1

2h1+ f1)
g1 h1 k1 ,

Y13 = 16 (h1
2k1

4−1/16 f1
2)
√
−g1 h1+k1

2g1 h1
2h2 (h2 uxuy+uxy)√

−g1 h1(16 h1 k3
1+4 f1 k1)

e1/4
−4 (t f2−x)(k1

2h1+ f1/4)
√
−g1 h1+4 g1 (k1

2yh1+k1h1 h2 u−1/4 y f1)
g1 h1 k1 .

(30)

• For arbitrary f (u), g(u) = g1u + g2, and h(u) = h1u + h2, there are two additional multipliers.

– For the multiplier Q14 = u,

T14 = 1/2 u2,
X14 = g1u uxx − 1/2 h1 uy

2 − 1/2 g1 ux
2 +

∫
u d

du f (u) du,
Y14 = h1u uxy.

(31)

– For the multiplier Q15 = uyy +
g1uxx

h1
+ f (u)

h1
,

T15 = 1/2 −g1 ux
2−h1 uy

2+2
∫

f (u)du
h1

,

X15 = 1/2 g1
2uxx

2+2 g1h1uxx uy,y+h1
2uyy

2+2 g1 f (u) uxx+2 h1 f (u)uyy+2 g1 ux+( f (u))2

h1
,

Y15 = uxuy.

(32)

• For f (u) = 1/2 f1u2 + f2 u + a3, g(u) = g1u + g2, and h(u) = h1u + h2, there are two
extra multipliers.

– For the multiplier Q16 = (− f1u− f2) t + x,

T16 = −1/2 (( f1u + 2 f2) t− 2 x) u,

X16 = 1/6
(
−2 f1

2u3 − 6 f1 f2 u2 +
((
−6 uxxg1 − 6 h1 uyy

)
f1 − 6 f2

2
)

u

+
(
3 g1 ux

2 − 3 h1 uy
2) f1 − 6 f2

(
g1uxx + h1 uyy

))
t + 1/2 f1 xu2

+ f2xu + 1/6 (6 xuxx − 6 ux) g1 + h1 xuyy,
Y16 = h1 ( f1 tux − 1) uy.

(33)

– For the multiplier Q17 = uyy +
g1uxx

h1
+ 1/2 u2 f1

h1
,

T17 = 1/6 f1 u3−3 g1 ux
2−3 h1 uy

2

h1
,

X17 = 1
24h1

(
12 g1

2uxx
2 +

(
24 h1uxxuyy + 12 f1 u2uxx + 12 ux ( f2 ux + 2 ut)

)
g1

+12 h1
2uyy

2 +
(
12 f1u2 uyy − 12 f2 uy

2) h1 + 3 f1
2u4 + 4 f1 f2 u3

)
,

Y17 = ( f2 ux + ut) uy.

(34)

In the above, f1 6= 0, f2, f3, g1 6= 0, g2, h1 6= 0, h2 6= 0, h3 6= 0 and k1 6= 0 are arbitrary constants.

5. Variational Structure and Hamiltonian Formulation

The (2 + 1)-dimensional generalised Zakharov–Kuznetsov Equation (6) can be written in
potential form

vtx + f (vx)x + g(vx)xxx + h(vx)yyx = 0, (35)



Symmetry 2020, 12, 1277 11 of 15

in terms of the potential
u = vx. (36)

It is straightforward to prove that the potential Equation (35) admits a local Lagrangian structure

δL
δv

= 0 (37)

if and only if g(vx) = g1vx + g2 and h(vx) = h1vx + h2, where δL/δv is the variational derivative with
respect to the variable v

δ

δv
= ∂v − Dt∂vt − Dx∂vx − Dy∂vy + D2

t ∂vtt + D2
x∂vxx + D2

y∂vyy + DtDx∂vtx + DtDy∂vty + DxDy∂vxy + · · · , (38)

and where the Lagrangian is given by

L =
1
2

g1v2
xx +

1
2

h1v2
xy −

1
2

vxvy −
∫

f (vx) dvx (39)

in terms of the variable v.
For g(u) = g1u + g2 and h(u) = h1u + h2, the variational structure yields a Hamiltonian

formulation for the gZK Equation (6), given by

ut = Dx

( δH
δu

)
(40)

where Dx is the Hamiltonian operator and

H =
∫
R2

(
−
∫

f (u) du− 1
2

g1u2
x −

1
2

h1u2
y

)
dx dy (41)

is the Hamiltonian density.

Variational Symmetries of the gZK Potential Equation

The (2 + 1)-dimensional gZK potential Equation (35) with g(vx) = g1vx + g2 and h(vx) =

h1vx + h2, given by
vtx + f (vx)x + g1vxxxx + h1vyyxx = 0, (42)

possesses a local Lagrangian structure (37) in terms of the Lagrangian (39), which we use to find the
variational symmetries of Equation (42).

A generator

Y = τ(t, x, y, v)∂t + ξ1(t, x, y, v)∂x + ξ2(t, x, y, v)∂y + η(t, x, y, v)∂v, (43)

is a Lie point symmetry of the gZK potential Equation (42) if

Y(4)
(

vtx + f (vx)x + g1vxxxx + h1vyyxx

)
= 0 (44)

when Equation (42) holds. Here Y(4) is the fourth prolongation of (43).
The point symmetry (43) has an equivalent characteristic form given by

Ŷ = P∂v, P = η − τvt − ξ1vx − ξ2vy (45)

in terms of the symmetry characteristic P.
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A symmetry (45) will be a variational symmetry if and only if it leaves invariant the Lagrangian
density L up to a total divergence,

ŶL = DtΨt + DxΨx + DyΨy, (46)

with Ψt, Ψx, Ψy depending on t, x, y, v, and derivatives of v. The invariance condition is equivalent to
the equation:

δ

δv

(
P

δL
δv

)
= 0, (47)

where δ
δv is the variational derivative (38), in terms of the Lagrangian functional L and the characteristic

P [15,22]. In order to determine the variational symmetries of the ZK potential Equation (42), we verify
which of the symmetries (43) satisfy the variational symmetry condition (47). We are interested in the
cases when f ′′(vx) 6= 0, since the Equation (42) is then nonlinear. Thus, we obtain the following results.

Theorem 3. The classification of point symmetries admitted by the (2 + 1)-dimensional generalised
Zakharov–Kuznetsov potential Equation (42) is given by the following cases:

(i) For arbitrary f (vx), g1 and h1, the admitted point symmetries are generated by:

Y1 = ∂t,
time-translation.

Y2 = ∂x,
space-translation.

Y3 = ∂y,
space-translation.

Y4 = F(t, y)∂v.

(ii) Additional point symmetries are admitted by the (2+1)-dimensional generalised ZK potential Equation (6)
in the following cases:

• For f (vx) = f1(vx + a)m + f2vx + f3,

Y5 = (m− 1)3t∂t + (m− 1) (2 f2t + x) ∂x + (m− 1)y∂y + ((m− 3)v− 2ax)∂v,
scaling combined with a Galilean boost.

• For f (vx) =
1
6 f1v3

x +
1
2 f2v2

x + f3vx + f4,

Y6 = 3 f1t∂t −
(

f1(2 f3t + x)− t f 2
2
)

∂x − f1y∂y + f2x∂v,
dilation combined with a Galilean boost.

• For f (vx) =
1
2 f1v2

x + f2vx + f3,

Y7 = f1t∂x + (x− f2t)∂v,
Galilean boost.

Y8 = 3t∂t + (2 f2t + x) ∂x + y∂y − v∂v,
scaling combined with a Galilean boost.
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• For f (vx) = f1v3
x + f2vx + f3,

Y9 = 3t∂t + (2 f2t + x) ∂x + y∂y,
dilation combined with a Galilean boost.

Theorem 4. The (2 + 1)-dimensional gZK potential Equation (42) admits the variational point symmetries
spanned by Y1, Y2, Y3, Y4 and Y7. Symmetry Y5 is only variational for m = 7

3 and symmetry Y6 is only
variational for f1 = 0, which is equivalent to Y7. Finally, Y8 and Y9 are not variational symmetries.

Noether’s theorem states that there is a one-to-one correspondence between conservation laws
and variational symmetries for any equation admitting a variational structure [15]. The correspondence
is equivalent to the condition:

Q = P, (48)

where Q is the conservation law multiplier and P is the variational symmetry characteristic. Therefore,
for each of the variational symmetries of the gZK potential Equation (42) in Theorem 4, there is a
corresponding conservation law associated to the multiplier Q = P.

We focus our attention on the variational symmetries and conservation laws of the gZK potential
Equation (42) that correspond to local symmetries and local conservation laws of the gZK Equation (6).
We observe that the space-translation symmetry Y2 of the potential Equation (42) correspond to the
multiplier Q = vx of the potential Equation (42), that yields the multiplier Q14 = u and conservation
law (31) of gZK Equation (6). We also observe that the Galilean boost symmetry Y7 of the potential
Equation (42) corresponds to the multiplier Q = x − f2t − f1tvx of the potential Equation (42),
that yields the multiplier Q16 = x− f2t− f1tu and conservation law (33) of gZK Equation (6).

6. Conclusions

In this paper, we have considered a generalised ZK equation in (2 + 1)-dimensions depending
on three arbitrary functions (6). We have performed a classification of point symmetries admitted by
Equation (6) depending on the arbitrary functions f (u), g(u) and h(u). We have shown that if f (u),
g(u) and h(u) satisfy certain conditions, Equation (6) admits line soliton solutions. To our knowledge,
these solutions have not appeared previously in the literature. We have constructed multipliers of
the generalised ZK Equation (6) having dependence on dependent variables, independent variables,
and derivatives of dependent variables up to second order. After computing multipliers, we have
derived the corresponding low-order local conservation laws. Finally, we have presented the potential
form of the gZK Equation (6) and obtained the Lagrangian structure in the case when g and h are linear
functions. In addition, we have presented the associated Hamiltonian formulation. Moreover, we have
determined the variational symmetries of the potential equation admitting a Lagrangian structure (42).
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Abbreviations

The following abbreviations are used in this manuscript:

ZK Zakharov–Kuznetsov equation
KdV Korteweg de Vries
gZK Generalised Zakharov–Kuznetsov equation with three arbitrary functions
PDE Partial differential equation
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