Show simple item record

dc.contributor.authorMoreno-Frías, M.A.
dc.contributor.authorRosales, José Carlos
dc.contributor.otherMatemáticasen_US
dc.date.accessioned2019-09-25T09:54:16Z
dc.date.available2019-09-25T09:54:16Z
dc.date.issued2019
dc.identifier.issn1300-0098
dc.identifier.urihttp://hdl.handle.net/10498/21707
dc.description.abstractA numerical semigroup is perfect if it does not have isolated gaps. In this paper we will order the perfect numerical semigroups with a fixed multiplicity. This ordering allows us to give an algorithm procedure to obtain them. We also study the perfect monoid, which is a subset of N that can be expressed as an intersection of perfect numerical semigroups, and we present the perfect monoid generated by a subset of N. We give an algorithm to calculate it. We study the perfect closure of a numerical semigroup, as well as the perfect numerical semigroup with maximal embedding dimension, in particular Arf and saturated numerical semigroups.en_US
dc.formatapplication/pdfen_US
dc.language.isoengen_US
dc.publisherSCIENTIFIC TECHNICAL RESEARCH COUNCIL TURKEY-TUBITAKen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceTurk J Math (2019) 43: 1742 – 1754en_US
dc.subjectArf semigroupen_US
dc.subjectembedding dimensionen_US
dc.subjectFrobenius numberen_US
dc.subjectgenusen_US
dc.subjectnumerical semigroupen_US
dc.subjectsaturated semigroupen_US
dc.titlePerfect numerical semigroupsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
This work is under a Creative Commons License Attribution-NonCommercial-NoDerivatives 4.0 Internacional