Symmetry Analysis and Conservation Laws of a Generalization of the Kelvin-Voigt Viscoelasticity Equation

Ficheros
Estadísticas
Métricas y Citas
Compartir
Metadatos
Mostrar el registro completo del ítemFecha
2019-07Departamento/s
MatemáticasFuente
Symmetry 2019, 11(7), 840Resumen
In this paper, we study a generalization of the well-known Kelvin-Voigt viscoelasticity
equation describing the mechanical behaviour of viscoelasticity. We perform a Lie symmetry analysis.
Hence, we obtain the Lie point symmetries of the equation, allowing us to transform the partial
differential equation into an ordinary differential equation by using the symmetry reductions.
Furthermore, we determine the conservation laws of this equation by applying the multiplier method.
Materias
viscoelasticity; Kelvin-Voigt equation; Lie symmetries; optimal system; group-invariant solutions; conservation laws; multiplier methodColecciones
- Artículos Científicos [2988]
- Articulos Científicos Ing. Inf. [70]